本文引用:http://bbs.ednchina.com/BLOG_ARTICLE_3013748.HTM
MSP430单片机的ADC12模块是一个12位精度的A/D转换模块,它具有高速度,通用性等特点。从以下ADC12结构框图中可以看出,ADC12模块是由以下部分组成:输入的16路模拟开关,ADC内部参考电压源,ADC12内核,ADC时钟源部分,采集与保持/触发源部分,ADC数据输出部分,ADC控制寄存器等。
ADC12OSC默认为5MHZ
ADC采样频率问题:http://www.amobbs.com/thread-5509957-1-1.html
http://bbs.elecfans.com/jishu_424114_1_1.html
一、ADC12转换模式
ADC12提供4种转换模式:
单通道单次转换
对选定的通道进行单次转换要进行如下设置:
x=CSStartAdd,指向转换开始地址
ADC12MEMx存放转换结果
ADC12IFG.x为对应的中断标志
ADC12MCTLx寄存器中定义了通道和参考电压
转换完成时必须使ENC再次复位并置位(上升沿),以准备下一次转换。在ENC复位并再次置位之前的输入信号将被忽略。序列通道单次转换
对序列通道进行单次转换要进行如下设置:
x=CSStartAdd,指示转换开始地址
EOS(ADC12MCTLx.7)=1标志序列中最后通道y,非最后通道的EOS位都是0,表示序列没有结束。
ADC12MEMx,...ADC12MEM.y存放转换结果
ADC12IFG.x,...ADC12IFG.y为对应的中断标志
ADC12MCTLx寄存器中定义了通道和参考电压
转换完成时必须使ENC再次复位并置位(上升沿),以准备下一次转换。在ENC复位并再次置位之前的输入信号将被忽略。单通道多次转换
对选定的通道进行多次转换,直到关闭该功能或ENC=0。进行如下设置:
x=CSStartAdd,指向转换开始地址
ADC12MEMx存放转换结果
ADC12MCTLx寄存器中定义了通道和参考电压
在这种模式下,改变转换模式,不必先停止转换,在当前正在进行的转换结束后,可改变转换模式。该模式的停止可有如下几种办法:
使用CONSEQ=0的办法,改变为单通道单次模式。
使用ENC=0直接使当前转换完成后停止。
使用单通道单次模式替换当前模式,同时使ENC=0序列通道多次转换
对序列通道进行多次转换,直到关闭该功能或ENC=0。进行如下设置:
x=CSStartAdd,指示转换开始地址
EOS(ADC12MCTLx.7)=1标志序列中最后通道y。
ADC12MCTLx寄存器中定义了通道和参考电压
改变转换模式,不必先停止转换。一旦改变模式(单通道单次模式除外),将在当前序列完成后立即生效
不论用户使用何种转换模式,都要处理以下问题:
设置具体模式
输入模拟信号
关注转换结束信号
存放转换数据以及采用查询或者中断方式读取数据
二、ADC12寄存器说明
ADC12模块的所有寄存器
1.ADC12CTL0 控制寄存器0,各位定义:
15~12 | 11~8 | 7 | 6 |
5 |
4 |
3 |
2 |
1 |
0 |
SHT1 | SHT0 | MSC | 2.5V | REF ON |
ADC12 ON |
ADC12 TOVIE |
ADC12 TVIE |
ENC | ADC12 SC |
ADC12SC——采样/转换控制位。在不同条件下,ADC12SC的含义如下所示:
ENC=1 |
SHP=1 | ADC12SC由0变为1启动A/D转换 |
A/D转换完成后ADC12SC自动复位 | ||
SHP=0 | ADC12SC保持高电平采样 | |
ADC12SC复位时启动一次转换 |
ENC——转换允许位。
0:ADC12为初始状态,不能启动A/D转换;
1:首次转换由SAMPCON上升沿启动
ADC12TVIE——转换时间溢出中断允许位(当前转换还没完成时,又发生一次采样请求,则会发生转换时间溢出)
0:没发生转换时间溢出
1:发生转换时间溢出
ADC12OVIE——溢出中断允许位(当ADC12MEMx中原有数据还没有读出,而又有新的转换结果数据要写入时,则发生溢出)
0:没发生溢出
1:发生溢出
ADC12ON——ADC12内核控制位
0:关闭ADC12内核
1:打开ADC12内核
REFON——参考电压控制位
0:内部参考电压发生器关闭
1:内部参考电压发生器打开
2.5V——内部参考电压的电压值选择位
0:选择1.5V内部参考电压
1:选择2.5V内部参考电压
MSC——多次采样转换位(CONSEQ<>0表示当前转换模式不是单通道单次转换)
有效条件 |
MSC值 |
含义 |
SHP=1 CONSEQ<>0 |
0 | 每次转换需要SHI信号的上升沿触发采样定时器 |
1 | 仅首次转换由SHI信号的上升沿触发采样定时器,而后采样转换将在前一次转换完成后立即进行 |
SHT1、SHT0——采样保持定时器1,采样保持定时器0
分别定义保存在转换结果寄存器ADC12MEM8~ADC12MEM15和ADC12MEM0~ADC12MEM7中的转换采样时序与采样时钟ADC12CLK的关系。采样周期是ADC12CLK周期乘4的整数倍,即:
SHITx |
0 |
1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12~15 |
n | 1 | 2 | 4 | 8 | 16 | 24 | 32 | 48 | 64 | 96 | 128 | 192 | 256 |
2.ADC12CTL1 转换控制寄存器1(大多数3~15位,只有在ENC=0时才可被修改),各位定义:
15~12 | 11~10 | 9 |
8 |
7~5 |
4、3 |
2、1 |
0 |
CSSTARTADD | SHS | SHP | ISSH | ADC12 DIV |
ADC12 SSEL |
CONSEQ | ADC12 |
CSSTARTADD——转换存储器地址位。该4位所表示的二进制数0~15分别对应ADC12MEM0~15。可以定义单次转换地址或序列转换的首地址。
SHS——采样触发输入源选择位。
0:ADC12SC
1:Timer_A.OUT1
2:Timer_B.OUT0
3:Timer_B.OUT1
SHP——采样信号(SAMPCON)选择控制位。
0:SAMPCON源自采样触发输入信号
1:SAMPCON源自采样定时器,由采样输入信号的上升沿触发采样定时器
ISSH——采样输入信号方向控制位
0:采样输入信号为同向输入
1:采样输入信号为反向输入
ADC12DIV——ADC12时钟源分频因子选择位。分频因子为该3位二进制数加1
ADC12SSEL——ADC12内核时钟源选择
0:ADC12内部时钟源——ADC12OSC
1:ACLK
2:MCLK
3:SMCLK
CONSEQ——转换模式选择位
0:单通道单次转换模式
1:序列通道单次转换模式
2:单通道多次转换模式
3:序列通道多次转换模式
ADC12BUSY——ADC12忙标志(只用于单通道单次转换模式,在其它转换模式下,该位无效)
0:表示没有活动的操作
1:表示ADC12正处于采样期间、转换期间或序列转换期间
3.ADC12MEM0~ADC12MEM15 转换存储寄存器
该组寄存器均为16位寄存器,用来存放A/D转换结果。中用其中低12位,高4位在读出时为0
4.ADC12MCTLx 转换存储控制寄存器(所有位只有在ENC为低电平时可修改,在POR时各位被复位)
对于每个转换存储器有一个对应的转换存储器控制寄存器,所以在进行CSSTARTADD转换存储器地址位设置的同时,也确定了ADC12MCTLx。该寄存器各位含义如下:
7 | 6,5,4 | 3,2,1,0 |
EOS | SREF | INCH |
EOS——序列结束控制位
0:序列没有结束
1:该序列中最后一次转换
SREF——参考电压源选择位
0:Vr+=AVcc,Vr-=AVss
1:Vr+=VREF+,Vr-=AVss
2,3:Vr+=VEREF+,Vr-=AVss
4:Vr+=AVcc,Vr-=VREF-/VEREF-
5:Vr+=VREF+,Vr-=VREF-/VEREF-
6,7:Vr+=VEREF+,Vr-=VREF-/VEREF-
INCH——选择模拟输入通道
0~7:A0~A7
8:VeREF+
9:VREF-/VeREF-
10:片内温度传感器的输出
11~15:(AVCC-AVSS)/2
5.ADC12IFG 中断标志寄存器 为16位,其中中断标志位ADC12IFG.x对应于转换存储寄存器ADC12MEMx。各位含义如下:
15 | 14 | ...... |
1 | 0 |
ADC12 IFG15 |
ADC12 IFG14 |
...... | ADC12 IFG1 |
ADC12 IFG0 |
ADC12IFG.x置位:转换结束,并且转换结果已经装入转换存储寄存器。
ADC12IFG.x复位:ADC12MEMx被访问。
6.ADC12IE 中断使能寄存器 为16位,对应于ADC12IFG寄存器。各位含义如下:
15 | 14 | ...... |
1 | 0 |
ADC12 IE.15 |
ADC12 IE.14 |
...... | ADC12 IE.1 |
ADC12 IE.0 |
ADC12IE.x=1:允许相应的中断标志位ADC12IFG.x在置位时发生的中断请求服务。
ADC12IE.x=0:禁止相应的中断标志位ADC12IFG.x在置位时发生的中断请求服务。
7.ADC12IV 中断向量寄存器
ADC12是一个多源中断:有18个中断标志(ADC12IFG.0~ADC12IFG.15与ADC12TOV,ADC12OV),但只有一个中断向量。所以需要设置这18个标志的优先级顺序,按照优先级顺序安排中断标志的响应,高优先级的请求可以中断正在服务的低优先级。如下表所示:
ADC12中断标志ADC12IFG |
ADC12TOV | ADC12OV | ADC12IV | |||||||||||||||
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 1 | 2 |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 1 | 0 | 4 |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 1 | 0 | 0 | 6 |
X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 0 | 0 | 0 | 8 |
~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ |
X | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
各中断标志会产生一个0~36的偶数。
ADC12OV和ADC12TOV会在访问ADC12IV后自动复位。但在响应了ADC12IFG.x标志对应的中断服务之后,相应的标志不自动复位,用以保证能处理发生溢出的情况。
ADC12是一个多源中断:有18个中断标志(ADC12IFG0-ADC12IFG15,ADC12TOV,ADC12OV)但只有一个中断向量。
例程1:
P.0输入单通道转换,参考电压AVCC,ADC12SC触发转换,采样保持时间是ADC内部时钟竞争的(16x),如果A0>0.5AVCC,P3.4置1,否则为0
例2
对AD0-AD3进行重复序列转换。
程序架构
中断方式
1、设置 ADC12工作模式,启动转换,开全局中断,等待中断
2、写中断处理函数
查询方式
设置ADC12工作模式,启动转换,查询中断标志ADC12IFG
while (!(0x01 & ADC12IFG));转换完毕读取采样值,系统自动清除中断标志
使用概述
主要参数配置
设置工作方式:sing\\sequence\\re-sing\\re-sequencd;
设置转换时间:SHTX
设置触发方式:ADC12SC\\MSC\\TimerA\\ TimerB
设置通道:外部通道\\内部Temperature sensor
设置参考源:系统电压\\内部参考源\\外部参考源
其他细节配置
一般要配置采样转换模式为脉冲(SHP),打开ADC12(ADC12ON),使能ADC12转换(ENC),使能中断(如果采取中断模式),触发转换(若采用ADC12SC触发)。
解释
ADC12模数转换是在SHI的上升沿初始化的。SHI信号有四个来源: The ADC12SC bit;The Timer_A Output Unit 1; The Timer_B Output Unit 0; The Timer_B Output Unit 1。故单次采样时只需要每次设置ADC12CTL0 |= ADC12SC就采样一次;重复采样时,如Rep-sing,设置ADC12CTL1 = SHS_1 +CONSEQ_2就选择了Rep-sing模式,每次采样通过定时器A触发。
实例
4.1 single采样,参考电源为系统电源
1.设置ADC12CTL0,使ADC12通道0采样保持时间为16 ADC12CLK(SHT0_2),开启ADC12模块(ADC12ON);
2.设置ADC12CTL1,选择采样保持脉冲模式即SAMPCON为采样定时器(SHP)
3.设置ADC12IE,是通道0中断使能(0x01);
4.设置ADC12CTL0,使能AD转换(ENC)
5.设置模拟信号输入IO口P60
7.设置ADC12CTL0,开启AD转换(ADC12SC),等待中断
8.中断中读取通道0转换值ADC12MEM0
ADC12CTL0 = SHT0_2 + ADC12ON; // Set sampling time, turn on ADC12
ADC12CTL1 = SHP; // Use sampling timer
ADC12IE = 0x01; // Enable interrupt
ADC12CTL0 |= ENC; // Conversion enabled
P6SEL |= 0x01; // P6.0 ADC option select
P2DIR |= 0x01;
ADC12CTL0 |= ADC12SC;
#pragma vector=ADC12_VECTOR
__interrupt void ADC12_ISR (void)
{
if (ADC12MEM0 < 0x7FF)
P2OUT = 0; // Clear P1.0 LED off
else
P2OUT = 0XFF; // Set P1.0 LED on
__low_power_mode_off_on_exit();
// 与上面等价_BIC_SR_IRQ(CPUOFF); // Clear CPUOFF bit from 0(SR)
}
4.2 single采样参考源为2.5V
在ADC12CTL0中设置参考源
在ADC12MCTL0中为通道0选择参考源
ADC12CTL0 = ADC12ON+SHT0_2+REFON+REF2_5V; // Turn on and set up ADC12
ADC12CTL1 = SHP; // Use sampling timer
ADC12MCTL0 = SREF_1; // Vr+=Vref+
for ( i=0; i<0x3600; i++); // Delay for reference start-up
ADC12CTL0 |= ENC;
while (1)
{
ADC12CTL0 |= ADC12SC; // Start conversion
while ((ADC12IFG & BIT0)==0);
_NOP(); // SET BREAKPOINT HERE
}
4.3 Repeat-single采样,模拟输入为内部Temperature sensor
设置ADC12CTL1,采样保持源为定时器A,脉冲保持模式,Repeat-single模式
ADC12CTL1 = SHS_1 + SHP + CONSEQ_2; // TA trig., rpt conv.
设置ADC12MCTL0,通道0参考源为内部REF,模拟输入通道0选择为Temperature sensor
ADC12MCTL0 = SREF_1 + INCH_10; // Channel A10, Vref+
ADC12IE = 0x01; // Enable ADC12IFG.0
ADC12CTL0 = SHT0_8 + REF2_5V + REFON + ADC12ON + ENC; // Config ADC12
TACCTL1 = OUTMOD_4; // Toggle on EQU1 (TAR = 0)
TACTL = TASSEL_2 + MC_2; // SMCLK, cont-mode
while (!(0x01 & ADC12IFG)); // First conversion?
FirstADCVal = ADC12MEM0; // Read out 1st ADC value
_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR (void)
{
if (ADC12MEM0 <= FirstADCVal + ADCDeltaOn)
P1OUT &= ~0x01; // LED off
else P1OUT |= 0x01; // LED on
}
摄氏温度和温度传感器电压转换关系:0摄氏度对应986mv,1摄氏度温差对应1.97mv温差
// oF = ((x/4096)*1500mV)-923mV)*1/1.97mV = x*761/4096 - 468
// IntDegF = (ADC12MEM0 - 2519)* 761/4096
IntDegF = (temp - 2519) * 761;
IntDegF = IntDegF / 4096;
// oC = ((x/4096)*1500mV)-986mV)*1/3.55mV = x*423/4096 - 278
// IntDegC = (ADC12MEM0 - 2692)* 423/4096
IntDegC = (temp - 2692) * 423;
IntDegC = IntDegC / 4096;
4.4 Repeat-sequence mode
Sequence模式时可以设置多个采样通道。在最后一个通道加上EOS就表明的采样通道结束位置。中断允许只需要设置最后一个通道。
为了采样速率尽可能快,可设置MSC,此时当SHI上升沿触发第一次采样后,后面的采样在上一次采样结束后自动进行。
ADC12CTL0 = ADC12ON+MSC+SHT0_8; // Turn on ADC12, extend sampling time
// to avoid overflow of results
ADC12CTL1 = SHP+CONSEQ_3; // Use sampling timer, repeated sequence
ADC12MCTL0 = INCH_0; // ref+=AVcc, channel = A0
ADC12MCTL1 = INCH_1; // ref+=AVcc, channel = A1
ADC12MCTL2 = INCH_2; // ref+=AVcc, channel = A2
ADC12MCTL3 = INCH_3+EOS; // ref+=AVcc, channel = A3, end seq.
ADC12IE = 0x08; // Enable ADC12IFG.3
ADC12CTL0 |= ENC; // Enable conversions
ADC12CTL0 |= ADC12SC; // Start conversion
_BIS_SR(LPM0_bits + GIE); // Enter LPM0, Enable interrupts
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR (void)
{
static unsigned int index = 0;
A0results[index] = ADC12MEM0; // Move A0 results, IFG is cleared
A1results[index] = ADC12MEM1; // Move A1 results, IFG is cleared
A2results[index] = ADC12MEM2; // Move A2 results, IFG is cleared
A3results[index] = ADC12MEM3; // Move A3 results, IFG is cleared
index = (index+1)%Num_of_Results; // Increment results index, modulo; Set Breakpoint here
}