2021-12-06 bert model

attention mask如何使用

  • attention_mask List[int] 0-mask,1-attention
    forward(,attention_mask,):
encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
  • extend_attention_mask
extended_attention_mask: torch.Tensor = \
self.get_extended_attention_mask(attention_mask, input_shape, device)

 def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.
        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
                # in case past_key_values are used we need to add a prefix ones mask to the causal mask
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)

                if causal_mask.shape[1] < attention_mask.shape[1]:
                    prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
                    causal_mask = torch.cat(
                        [
                            torch.ones(
                                (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
                            ),
                            causal_mask,
                        ],
                        axis=-1,
                    )

                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

  • get_extended_attention_mask

attention_mask=extend_attention_mask

  • is_decoder中encoder_attention_mask: encoder_extend_attention_mask=self.invert_attention_mask()

形成一个下三角矩阵

最终mask在BertSelfAttention里起作用。

  • 在forward函数里求出attention score之后,通过运行
if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask
attention_probs = nn.functional.softmax(attention_scores, dim=-1)

在BertModel传入attention_mask

这是attention已经在BertModel的forward的get_extended_attention_mask处转变
其中get_extended_attention_mask

其中get_extended_attention_mask来自modeling_utils.py文件

        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

目的,将attention_mask中为0的变为大负数,1的为0

  • 此时传给encoder的attention_mask已经改变,(encoder_attention_mask根据是否decoder传值)。
  • encoder来自 BertEncoder(config)
  • BertEncoder封装了num_hidden_layer个BertLayer
  • BertLayer封装了BertAttention和BertIntermediate和BertOutput
    *BertAttention封装了BertSelfAttention,和BertSelfOutput

一个疑惑:BertModel的init具体初始化了那些东西

*Bert的init函数里有

super().__init__(config)
self.post_init()

在QA中,tokenizer之后的inputs的attention_mask仍然保持全1状态,需要手动调整

你可能感兴趣的:(2021-12-06 bert model)