DFS:842. 排列数字

给定一个整数 nn,将数字 1∼n1∼n 排成一排,将会有很多种排列方法。

现在,请你按照字典序将所有的排列方法输出。

输入格式

共一行,包含一个整数 nn。

输出格式

按字典序输出所有排列方案,每个方案占一行。

数据范围

1≤n≤71≤n≤7

输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
难度:简单
时/空限制:1s / 64MB
总通过数:95837
总尝试数:121097
来源:模板题
算法标签

思路

1.深度优先搜索:只要所有数字使用完成,就输出该种情况

    if(u>n)
    {
        for(int i=1;i<=n;i++)   printf("%d ",path[i]);
        printf("\n");
        return;
    }

2.path[i]表示一条路径,每一个位置可以放置一个数字

3.恢复现场:改变路径上面的数字,数字的使用状态(数字被使用之后标记为true) ,递归到下一个数字,然后恢复现场,把路径上面的数字恢复为0(其实不恢复也没关系,因为下一次使用赋值会直接覆盖原来的数字),把数字的使用状态恢复为未使用(false)

    for(int i=1;i<=n;i++)
    {
        if(!state[i])
        {
            path[u]=i;
            state[i]=true;
            dfs(u+1);
            path[u]=0;
            state[i]=false;
        }
    }

代码

#include
using namespace std;

const int N=10;
int n,path[N];
bool state[N];

void dfs(int u)
{
    if(u>n)
    {
        for(int i=1;i<=n;i++)   printf("%d ",path[i]);
        printf("\n");
        return;
    }
    for(int i=1;i<=n;i++)
    {
        if(!state[i])
        {
            path[u]=i;
            state[i]=true;
            dfs(u+1);
            path[u]=0;
            state[i]=false;
        }
    }
}

int main()
{
    scanf("%d",&n);
    dfs(1);
    
    return 0;
}

 

 

你可能感兴趣的:(算法竞赛,深度优先,算法,数据结构)