【数据结构】二叉树的构建(C语言实现)

1.树概念及结构

1.1树的概念 

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1**、T2……、**Tm,其中每一个集合Ti(1<= i
    <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

【数据结构】二叉树的构建(C语言实现)_第1张图片

1.2树的相关概念

 【数据结构】二叉树的构建(C语言实现)_第2张图片 

 

节点的度:个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林
概念很多,还是要我们一一了解的!

1.3树得表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

【数据结构】二叉树的构建(C语言实现)_第3张图片

1.4树的实际应用 (表示文件系统的目录树结构,网上查找的图片)

【数据结构】二叉树的构建(C语言实现)_第4张图片

 

2.二叉树概念及结构

2.1相关概念

一棵二叉树是结点的一个有限集合:

1.或者为空

2.由一个根节点加上两棵别称为左子树和右子树的二叉树组成

【数据结构】二叉树的构建(C语言实现)_第5张图片

  • 二叉树不存在度大于2的结点
  • 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

 注意:对于任意的二叉树都是由以下几种情况复合而成的:

【数据结构】二叉树的构建(C语言实现)_第6张图片

 2.2特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

关看概念是不好理解的,上图

【数据结构】二叉树的构建(C语言实现)_第7张图片

 2.3二叉树的性质

若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.

若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^(h-1)

对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2,则有n0 =n2 +1

若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=long(n+1) . (ps:是log以2为底,n+1为对数)

对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有 :

1.若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

2.若2i+1,左孩子序号:2i+1,2i+1>=n否则无左孩子

3.若2i+2,右孩子序号:2i+2,2i+2>=n否则无右孩子
 

了解二叉树的性质后,我们不妨上手几道题

1.某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199

答案:B。n0 = n2+1,既n0=199+1 = 200
2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈

答案:A。

3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

答案:A。总结点数n = n0+n1+n2;又n2 = n0-1,既n=n0+n1+n0-1,在完全二叉树中,n1只有0个或者1个,代入选A

4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12

答案:B

【数据结构】二叉树的构建(C语言实现)_第8张图片

5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386

答案:B。类似于第3题,总结点n = n0+n1+n0-1;n1为0或者1,代入能整除的选B

2.4二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

【数据结构】二叉树的构建(C语言实现)_第9张图片

 2.链式结构

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是 链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程 学到高阶数据结构如红黑树等会用到三叉链。

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

【数据结构】二叉树的构建(C语言实现)_第10张图片

 4.二叉树链式结构的实现

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树。

【数据结构】二叉树的构建(C语言实现)_第11张图片

这棵树的代码实现:

#include 
#include 
#include 
typedef int BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;


BTNode* CreatTree()
{
	BTNode* n1 = (BTNode*)malloc(sizeof(BTNode));
	assert(n1);
	BTNode* n2 = (BTNode*)malloc(sizeof(BTNode));
	assert(n2);
	BTNode* n3 = (BTNode*)malloc(sizeof(BTNode));
	assert(n3);
	BTNode* n4 = (BTNode*)malloc(sizeof(BTNode));
	assert(n4);
	BTNode* n5 = (BTNode*)malloc(sizeof(BTNode));
	assert(n5);
	BTNode* n6 = (BTNode*)malloc(sizeof(BTNode));
	assert(n6);

	n1->data = 1;
	n2->data = 2;
	n3->data = 3;
	n4->data = 4;
	n5->data = 5;
	n6->data = 6;

	n1->left = n2;
	n1->right = n4;
	n2->left = n3;
	n2->right = NULL;
	n3->left = NULL;
	n3->right = NULL;
	n4->left = n5;
	n4->right = n6;
	n5->left = NULL;
	n5->right = NULL;
	n6->left = NULL;
	n6->right = NULL;

	return n1;
}

 搭建好框架,我们进行下一步操作

4.1层序遍历

先序、中序、后序遍历递归操作:

//先序
void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	printf("%d ", root->data);
	PreOrder(root->left);
	PreOrder(root->right);
}

//中序
void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

//后序
void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

我们发现二叉树的层序遍历好像也不难,但是深入理解我们会发现递归调用过程还是蛮复杂的,下面我们来试着理解递归调用展开图。

【数据结构】二叉树的构建(C语言实现)_第12张图片

 

除了这三种遍历的方式,二叉树还有层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序

那么如何实现层序遍历呢?

我们可以借用一个队列,把结点代入队列, 不为空出队列,在把孩子带入队列,在出队列,在把孩子代入,如此往复,直到结点全部出队列,即队列为空层序遍历结束。简单来说:就是上一层结点出的时候带入下一层结点。这里用C语言实现:所以我们首先是要去手写一个队列。

//二叉树
typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

//队列(用链表实现,data的类型是BTNode*)
typedef BTNode* QDataType;
typedef struct QueueNode
{
	struct QueueNode* next;
	QDataType data;
}QNode;

typedef struct Queue
{
	QNode* head;
	QNode* tail;
}Queue;

void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);
void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);
bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);

void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}

void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);

		cur = next;
	}

	pq->head = pq->tail = NULL;
}

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	newnode->data = x;
	newnode->next = NULL;

	if (pq->tail == NULL)
	{
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
}

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->head->data;
}

QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->tail->data;
}

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->head == NULL;
}

int QueueSize(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;
	int size = 0;
	while (cur)
	{
		++size;
		cur = cur->next;
	}

	return size;
}

//层序遍历
void TreeLevelOrder(BTNode*root)
{
	Queue q;
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		printf("%d ",front->data);

		//下一层
		if (front->left)
			QueuePush(&q, front->left);
		if (front->right)
			QueuePush(&q, front->right);

	}
	printf("\n");

	QueueDestroy(&q);
}

4.2其他操作

节点的个数

// 节点的个数
int TreeSize(BTNode* root)
{
	return root == NULL ? 0 :
		TreeSize(root->left)  +
		TreeSize(root->right) + 1;
}

叶子节点的个数


// 叶子节点个数
int TreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;

	if (root->left == NULL
		&& root->right == NULL)
		return 1;

	return TreeLeafSize(root->left)
		+ TreeLeafSize(root->right);
}

 二叉树的高度

int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	int lh = TreeHeight(root->left);
	int rh = TreeHeight(root->right);

	return lh > rh ? lh + 1 : rh + 1;
}

第k层节点的个数

// 第K层节点个数
int TreeKLevel(BTNode* root, int k)
{
	assert(k > 0);

	if (root == NULL)
		return 0;

	if (k == 1)
		return 1;

	// 转换成求子树第k-1层
	return TreeKLevel(root->left, k - 1)
		+ TreeKLevel(root->right, k - 1);
}

返回x所在的节点

// 返回x所在的节点
BTNode* TreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;

	if (root->data == x)
		return root;

	// 先去左树找
	BinaryTreeNode*lret = TreeFind(root->left, x);
	if (lret)
		return lret;

	// 左树没有找到,再到右树找
	BinaryTreeNode*rret = TreeFind(root->right, x);
	if (rret)
		return rret;

	return NULL;
}

二叉树的销毁

void BinaryTreeDestory(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	BinaryTreeDestory(root->left);
	BinaryTreeDestory(root->right);
	free(root);
}

通过主函数测试上面的几个函数


int main()
{
	BTNode* root = CreateTree();
	PreOrder(root);
	printf("\n");

	InOrder(root);
	printf("\n");

	printf("Tree size:%d\n", TreeSize(root));
	printf("Tree size:%d\n", TreeSize(root));
	printf("Tree size:%d\n", TreeSize(root));

	printf("Tree Leaf size:%d\n", TreeLeafSize(root));
	printf("Tree Height:%d\n", TreeHeight(root));
	printf("Tree K Level:%d\n", TreeKLevel(root, 3));
	printf("Tree Find:%p\n", TreeFind(root, 8));

	BTNode* ret = TreeFind(root, 7);
	ret->data *= 10;

	PreOrder(root);
	printf("\n");

	return 0;
}

4.3判断完全二叉树

我们该怎么去判断是否为完全二叉树呢?这就可以用到我们上面说的层序遍历了:

我们一层一层地走,对于完全二叉树来说,一层一层地走,遇到空以后,后面就不会有非空了(因为完全二叉树是从左到右依次连续的),有非空的话那就不是完全二叉树了。

//判断是否为完全二叉树
bool BinaryTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		if (front == NULL)
		{
			break;
		}
		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
	}
	//遇到空以后,后面全是空——完全二叉树
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		if (front != NULL)
		{
			QueueDestory(&q);
			return false;
		}
	}
	QueueDestroy(&q);
	return true;
}

目录

1.树概念及结构

1.1树的概念 

1.2树的相关概念

1.3树得表示

1.4树的实际应用 (表示文件系统的目录树结构,网上查找的图片)

2.二叉树概念及结构

2.1相关概念

 2.2特殊的二叉树:

 2.3二叉树的性质

2.4二叉树的存储结构

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

 4.二叉树链式结构的实现

4.1层序遍历

4.2其他操作

4.3判断完全二叉树


你可能感兴趣的:(数据结构与算法,数据结构)