对于一个纯净背景中的目标检测而言,通过与固定的权值进行对比,回波信号中的目标很容易被检测到。然而实际场景中却不是如此理想,其背景中充斥着各种杂波以及干扰,通常背景中的杂波或干扰甚至会随时间和位置的改变而发生变化。因此,根据杂波环境的不同,实际检测中需要一种自适应的目标检测处理,即恒虚警概率(Constant False Alarm Rate,CFAR)。
关于杂波环境的获取,需要对检测单元周围的其他单元,即位于一定窗范围内的单元进行分析,以便得到当前的杂波环境。
实际中,杂波环境中可能具有多个来源。从当前状态中提升目标检测以及杂波抑制的性能需要一点一点的将影响的因素剥离开来,罗马不是一天建成的,从杂波环境中检测到目标也不是一下就可以达到最佳效果的。最终可能会是对不同杂波区域内的杂波种类性质的讨论,以及大小,边界,功率和频谱特征等。而不是在信号处理的早期阶段就尝试对其进行忽略。因此,为了将目标从杂波中提取出,非常有用的一点是在整个观测平面上对杂波场景进行观测。
如何进行观测,常用的方法有单元平均CFAR,有序统计CFAR,以及其他改进方法等。这里主要对这两种方法进行介绍。
- 单元平均 CFAR
如下所示,对于图中的待检测单元的单元平均CFAR,利用待检测单元周围的临近参考单元的功率平均估计出待检测单元周围的杂波环境的功率情况。
设这个待检测单元周围参考单元的平均功率为β²,可以表示为
则要求的门限就为估计得到的杂波功率乘以一个系数α,即
其中,对于给定的虚警概率,所需的系数因子α为
因此,单元平均的方法就是通过对待测单元周围的参考单元的杂波功率水平进行估计,然后计算出门限值进行检测。之所以要在待测单元的两侧定义一定长度的保护单元,是为了防止目标过大导致数据泄露,影响到门限值的计算。
对于单元平均CFAR,当存在两个或者多个目标时,若其中一个为待测单元,另一个位于参考单元内,此时会出现目标遮蔽现象。由于其他目标位于参考窗内,此时得到的杂波功率估计值就会被提高,CFAR的门限因此会被抬升,从而产生遮蔽现象。
下面给出的例子中,设置杂波功率为20dB,分别在第51个58位置上设置了目标,利用单元平均CFAR可以发现,最后检测出的结果中,第51个目标由于受到相邻强目标的遮蔽,位于检测门限之下,并未被检测出。
- 有序统计CFAR
对于有序统计CFAR,则是根据所选样本的排序后的处理,其中我们选择了排序后第0.75N位置上的值作为估计值,即
由于此时的检测门限是由检测单元周围邻近单元进行排序后得到的,因此这样的方法被称为有序统计类CFAR。
同样的,利用前面的例子,此时采用有序统计CFAR,得到的结果为
可以发现,此时对于前述的目标遮蔽效应造成的性能恶化有了改善,位于第51,58位置上的目标都能被检测到。
这里主要对单元平均和有序统计CFAR进行介绍,对于Automotive radar信号处理中的目标检测,通常是在2D-Map上进行的,也就是说采用的CFAR是2D的,在距离维和多普勒维上的CFAR处理,只需要将一维的方法扩展到二维。另外,二维的CFAR处理采用的方法也可以是单元平均和有序统计CFAR的结合,或者是相应算法的改进。
推荐文章
[1] H Rohling ,Radar CFAR Thresholding in Clutter and Multiple Target Situations.
如果需要文章,可以在后台回复CFAR获取。
题图:Joao Jesus,from Pexels.