数字数据集上的K-均值聚类

10、数字数据集上的K-均值聚类

import numpy as np

from time import time

from sklearn import metrics

from sklearn.cluster import KMeans

from sklearn.decomposition import PCA

from sklearn.preprocessing import scale

from sklearn.datasets import load_digits

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

X_digits,y_digits=load_digits(return_X_y=True)

data=scale(X_digits)

n_samples,n_features=data.shape

n_digits=len(np.unique(y_digits))

labels=y_digits

print(labels)

sample_size=300

print(82*'-')

print('init\ttime\tinertia\thome\tcompo\tv_meas\tars\tami\tailhouette')

def bench_k_means(estimator,name,data):

    t0=time()

    estimator.fit(data)



    print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'

        % (name,(time()-t0),estimator.inertia_,

          metrics.homogeneity_score(labels,estimator.labels_),

          metrics.completeness_score(labels,estimator.labels_),

          metrics.v_measure_score(labels,estimator.labels_),

          metrics.adjusted_rand_score(labels,estimator.labels_),

          metrics.adjusted_mutual_info_score(labels,estimator.labels_),

          metrics.silhouette_score(data,estimator.labels_,

                                  metric='euclidean',

                                  sample_size=sample_size)))


bench_k_means(KMeans(init='k-means++',n_clusters=n_digits,n_init=10),name='k-means++',data=data)


bench_k_means(KMeans(init='random',n_clusters=n_digits,n_init=10),name='random',data=data)

#上面初始质心是确定的,把初始质心设定为1进行测试

pca=PCA(n_components=n_digits).fit(data)

bench_k_means(KMeans(n_clusters=n_digits,init='k-means++',n_init=1),name='pca_based',data=data)

print(82*'-')

#在降维的数据上图形化显示

reduced_data=PCA(n_components=2).fit_transform(data)

kmeans=KMeans(init='k-means++',n_clusters=n_digits,n_init=10)

kmeans.fit(reduced_data)

#网格步长

h=0.02

#分配颜色到决策边界。

x_min,x_max=reduced_data[:,0].min()-1,reduced_data[:,0].max()+1

y_min,y_max=reduced_data[:,1].min()-1,reduced_data[:,1].max()+1

xx,yy=np.meshgrid(np.arange(x_min,x_max,h),np.arange(y_min,y_max,h))

# 获取网格中每个点的标签

Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

# 将结果放入彩色图中

Z = Z.reshape(xx.shape)

plt.figure(1)

plt.clf()

plt.imshow(Z, interpolation='nearest',

          extent=(xx.min(), xx.max(), yy.min(), yy.max()),

          cmap=plt.cm.Paired,

          aspect='auto', origin='lower')

plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)

# 用白色X画出中心体

centroids = kmeans.cluster_centers_

plt.scatter(centroids[:, 0], centroids[:, 1],

            marker='x', s=169, linewidths=3,

            color='w', zorder=10)

plt.title('数字数据集上的K-均值聚类 \n''PCA约简数据\n'

          '白色X标出中心体')

plt.xlim(x_min, x_max)

plt.ylim(y_min, y_max)

plt.xticks(())

plt.yticks(())

plt.show()


你可能感兴趣的:(数字数据集上的K-均值聚类)