MATLAB算法实战应用案例精讲-【优化算法】树木生长算法(TGA)(附MATLAB代码实现)

前言

Armin Cheraghalipour 根据树木生长的特点于2017 年提出了一种新的元启发式优化算法TGA该算将始定量的群按照解的适应度从高到低排序,分成4组具有不同功能的种群。每次迭代分别进行处理。

算法原理

算法流程图

MATLAB算法实战应用案例精讲-【优化算法】树木生长算法(TGA)(附MATLAB代码实现)_第1张图片

 

代码实现

MATLAB

TGA.m

% "Tree growth algorithm (TGA): A novel approach for solving
% optimization problems"
function [fitG,Xgb,curve] = TGA(N, max_Iter, lb,ub ,dim, fun)
% Parameters
num_tree1  = 3;    % size of first group
num_tree2  = 5;    % size of second group
num_tree4  = 3;    % size of fourth group
theta      = 0.8;  % tree reduction rate of power
lambda     = 0.5;  % control nearest tree
% Limit number of N4 to N1
if num_tree4 > num_tree1 + num_tree2
  num_tree4 = num_tree1 + num_tree2; 
end
% Initial 
X   = zeros(N,dim); 
for i = 1:N
	for d = 1:dim
    X(i,d) = lb + (ub - lb) * rand();
	end
end
% Fitness
fit  = zeros(1,N); 
fitG = inf;
for i = 1:N
  fit(i) = fun(X(i,:));
  % Best 
  if fit(i) < fitG
    fitG = fit(i); 
    Xgb  = X(i,:);
  end
end
% Sort tree from best to worst
[fit, idx] = sort(fit,'ascend');
X          = X(idx,:); 
% Initial
dist = zeros(1,num_tree1 + num_tree2);
X1   = zeros(num_tree1,dim);
Xnew = zeros(num_tree4,dim);
Fnew = zeros(1,num_tree4);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iterations
while t <= max_Iter
	% {1} Best trees group
  for i = 1:num_tree1
    r1 = rand();
    for d = 1:dim
      % Local search (1)
      X1(i,d) = (X(i,d) / theta) + r1 * X(i,d);
    end
  	% Boundary
    XB = X1(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
    X1(i,:) = XB;
    % Fitness
    fitT = fun(X1(i,:));
    % Greedy selection
    if fitT <= fit(i)
      X(i,:) = X1(i,:);
      fit(i) = fitT;
    end
  end
  % {2} Competitive for light tree group
  X_ori = X;
  for i = num_tree1 + 1 : num_tree1 + num_tree2
    % Neighbor tree
    for j = 1 : num_tree1 + num_tree2           
      if j ~= i
        % Compute Euclidean distance (2)
        dist(j) = sqrt(sum((X_ori(j,:) - X_ori(i,:)) .^ 2));
      else
        % Solve same tree problem
        dist(j) = inf;
      end
    end
    % Find 2 trees with shorter distance
    [~, idx] = sort(dist,'ascend'); 
    T1       = X_ori(idx(1),:);
    T2       = X_ori(idx(2),:); 
    % Alpha in [0,1]
    alpha    = rand();
    for d = 1:dim
      % Compute linear combination between 2 shorter tree (3)
      y = lambda * T1(d) + (1 - lambda) * T2(d);
      % Move tree i between 2 adjacent trees (4)
      X(i,d) = X(i,d) + alpha * y;
    end
    % Boundary
    XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
    X(i,:) = XB;
    % Fitness
    fit(i) = fun(X(i,:));
  end
  % {3} Remove and replace group
  for i = num_tree1 + num_tree2 + 1 : N
    for d = 1:dim
      % Generate new tree by remove worst tree
      X(i,d) = lb + (ub - lb) * rand();
    end
    % Fitness
    fit(i) = fun(X(i,:) );
  end
  % {4} Reproduction group
  for i = 1:num_tree4
    % Random a best tree
    r     = randi([1,num_tree1]);
    Xbest = X(r,:);
    % Mask operator
    mask  = randi([0,1],1,dim);
    % Mask opration between new & best trees
    for d = 1:dim
      % Generate new solution 
      Xn = lb + (ub - lb) * rand();
      if mask(d) == 1
        Xnew(i,d) = Xbest(d);
      elseif mask(d) == 0
        % Generate new tree
        Xnew(i,d) = Xn;
      end
    end
    % Fitness
    Fnew(i) = fun(Xnew(i,:));
  end
  % Sort population get best nPop trees
  XX        = [X; Xnew];
  FF        = [fit, Fnew];
  [FF, idx] = sort(FF,'ascend');
  X         = XX(idx(1:N),:);
  fit       = FF(1:N);
  % Global best
  if fit(1) < fitG
    fitG = fit(1); 
    Xgb  = X(1,:);
  end
  curve(t) = fitG;
    t = t + 1;
end
end

func_plot.m

% This function draw the benchmark functions

function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2' 
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F5' 
        x=-200:2:200; y=x; %[-5,5]
    case 'F6' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F7' 
        x=-1:0.03:1;  y=x;  %[-1,1]
    case 'F8' 
        x=-500:10:500;y=x; %[-500,500]
    case 'F9' 
        x=-5:0.1:5;   y=x; %[-5,5]    
    case 'F10' 
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11' 
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12' 
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13' 
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14' 
        x=-100:2:100; y=x;%[-100,100]
    case 'F15' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16' 
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18' 
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20' 
        x=-5:0.1:5; y=x;%[-5,5]        
    case 'F21' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22' 
        x=-5:0.1:5; y=x;%[-5,5]     
    case 'F23' 
        x=-5:0.1:5; y=x;%[-5,5]  
end    

    

L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end       
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end          
    end
end

surfc(x,y,f,'LineStyle','none');

end

Get_Functions_details.m

% This function containts full information and implementations of the benchmark 
% functions in Table 1, Table 2, and Table 3 in the paper

% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
% dim is the number of variables (dimension of the problem)

function [lb,ub,dim,fobj] = Get_Functions_details(F)


switch F
    case 'F1'
        fobj = @F1;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F2'
        fobj = @F2;
        lb=-10;
        ub=10;
        dim=30;
        
    case 'F3'
        fobj = @F3;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F4'
        fobj = @F4;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F5'
        fobj = @F5;
        lb=-30;
        ub=30;
        dim=30;
        
    case 'F6'
        fobj = @F6;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F7'
        fobj = @F7;
        lb=-1.28;
        ub=1.28;
        dim=30;
        
    case 'F8'
        fobj = @F8;
        lb=-500;
        ub=500;
        dim=30;
        
    case 'F9'
        fobj = @F9;
        lb=-5.12;
        ub=5.12;
        dim=30;
        
    case 'F10'
        fobj = @F10;
        lb=-32;
        ub=32;
        dim=30;
        
    case 'F11'
        fobj = @F11;
        lb=-600;
        ub=600;
        dim=30;
        
    case 'F12'
        fobj = @F12;
        lb=-50;
        ub=50;
        dim=30;
        
    case 'F13'
        fobj = @F13;
        lb=-50;
        ub=50;
        dim=30;
        
    case 'F14'
        fobj = @F14;
        lb=-65.536;
        ub=65.536;
        dim=2;
        
    case 'F15'
        fobj = @F15;
        lb=-5;
        ub=5;
        dim=4;
        
    case 'F16'
        fobj = @F16;
        lb=-5;
        ub=5;
        dim=2;
        
    case 'F17'
        fobj = @F17;
        lb=[-5,0];
        ub=[10,15];
        dim=2;
        
    case 'F18'
        fobj = @F18;
        lb=-2;
        ub=2;
        dim=2;
        
    case 'F19'
        fobj = @F19;
        lb=0;
        ub=1;
        dim=3;
        
    case 'F20'
        fobj = @F20;
        lb=0;
        ub=1;
        dim=6;     
        
    case 'F21'
        fobj = @F21;
        lb=0;
        ub=10;
        dim=4;    
        
    case 'F22'
        fobj = @F22;
        lb=0;
        ub=10;
        dim=4;    
        
    case 'F23'
        fobj = @F23;
        lb=0;
        ub=10;
        dim=4;            
end

end

% F1

function o = F1(x)
o=sum(x.^2);
end

% F2

function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end

% F3

function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
    o=o+sum(x(1:i))^2;
end
end

% F4

function o = F4(x)
o=max(abs(x));
end

% F5

function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end

% F6

function o = F6(x)
o=sum(abs((x+.5)).^2);
end

% F7

function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end

% F8

function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end

% F9

function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end

% F10

function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end

% F11

function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end

% F12

function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end

% F13

function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end

% F14

function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25
    bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end

% F15

function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end

% F16

function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end

% F17

function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end

% F18

function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end

% F19

function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F20

function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F21

function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:5
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F22

function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:7
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F23

function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:10
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

main.m

%_________________________________________________________________________________
%_________________________________________________________________________________
clear all 
clc

SearchAgents_no=30; % Number of search agents
Function_name='F1'; % Name of the test function that can be from F1 to F23 
Max_iteration=500; % Maximum numbef of iterations
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,cg_curve]=TGA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

display(['The best solution obtained by OPTIMIZER is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective function found by OPTIMIZER is : ', num2str(Best_score)]);

%Draw objective space
figure,
subplot(1,2,1);
func_plot(Function_name);
title([Function_name])
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
set(gca,'color','none')
grid off

subplot(1,2,2);
semilogy(cg_curve,'Color','b','LineWidth',4);
title('Convergence curve')
xlabel('Iteration');
ylabel('Best fitness obtained so far');
axis tight
grid off
box on
legend('TGA')

你可能感兴趣的:(算法,matlab,数据结构)