03_拉氏反变换&&传递函数

复习

拉氏变换的定义: F ( s ) = ∫ 0 ∞ f ( t ) ⋅ e − s t d t F(s)=\int_0^\infty f(t)·e^{-st}dt F(s)=0f(t)estdt

常见函数的拉普拉斯变换

f ( t ) f(t) f(t) F ( s ) F(s) F(s)
单位脉冲 δ ( t ) \delta(t) δ(t) 1
单位阶跃 1 ( t ) 1(t) 1(t) 1 s \frac{1}{s} s1
单位斜坡 t t t 1 s 2 \frac{1}{s^2} s21
单位加速度 t 2 2 \frac{t^2}{2} 2t2 1 s 3 \frac{1}{s^3} s31
指数函数 e − a t e^{-at} eat 1 s + a \frac{1}{s+a} s+a1
正弦函数 sin ⁡ w t \sin wt sinwt w s 2 + w 2 \frac{w}{s^2+w^2} s2+w2w
余弦函数 cos ⁡ w t \cos wt coswt s s 2 + w 2 \frac{s}{s^2+w^2} s2+w2s

L变换重要定理

线性性质 L [ a f 1 ( t ) ] ± b f 2 ( t ) = a F 1 ( s ) ± b F 2 ( s ) L[af_1(t)]\pm bf_2(t)=aF_1(s)\pm bF_2(s) L[af1(t)]±bf2(t)=aF1(s)±bF2(s)
微分定理 L [ f ′ ( t ) ] = s ⋅ F ( s ) − f ( 0 ) L[f'(t)]=s·F(s)-f(0) L[f(t)]=sF(s)f(0)
积分定理 L [ ∫ f ( t ) d t ] = 1 s ⋅ F ( s ) + 1 s f ( − 1 ) ( 0 ) L[\int f(t)dt]=\frac{1}{s}·F(s)+\frac{1}{s}f^{(-1)}(0) L[f(t)dt]=s1F(s)+s1f(1)(0)
实位移定理 L [ f ( t − τ ) ] = e − τ s ⋅ F ( s ) L[f(t-\tau)]=e^{-\tau s}·F(s) L[f(tτ)]=eτsF(s)
复位移定理 L [ e A t f ( t ) ] = F ( s − A ) L[e^{At}f(t)]=F(s-A) L[eAtf(t)]=F(sA)
初值定理 lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) \lim_{t\rightarrow0}f(t)=\lim_{s\rightarrow\infty}s·F(s) limt0f(t)=limssF(s)
终值定理 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \lim_{t\rightarrow\infty}f(t)=\lim_{s\rightarrow0}s·F(s) limtf(t)=lims0sF(s)

拉氏反变换

基本概念

  • 反演公式 f ( t ) = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) ⋅ e t s d s f(t)=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F(s)·e^{ts}ds f(t)=2πj1σjσ+jF(s)etsds

  • 查表法(分解部分分式法) { 试凑法 系数比较法 留数法 \begin{cases}试凑法\\系数比较法\\留数法\end{cases} 试凑法系数比较法留数法

  • 模态: 如果n阶微分方程的特征根是 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn且无重根,则把函数 e λ 1 t , e λ 2 t , . . . , e λ n t e^{\lambda_1t}, e^{\lambda_2t},...,e^{\lambda_nt} eλ1t,eλ2t,...,eλnt称为该微分方程所描述运动的模态, 也叫做振型

03_拉氏反变换&&传递函数_第1张图片

留数法分解部分分式

一般有 F ( s ) = B ( s ) A ( s ) = b m s m + b m − 1 s m − 1 + . . . + b 0 a n s n + a n − 1 s ( n − 1 ) + . . . a 0 ( n > m ) 设 A ( s ) = a n s n + a n − 1 s n − 1 + . . . a 0 = ( s − p 1 ) ( s − p 2 ) . . . ( s − p n ) \begin{aligned} 一般有\quad F(s)&=\frac{B(s)}{A(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+...+b_0}{a_ns^n+a_{n-1}s^{(n-1)}+...a_0}(n>m)\\设\quad A(s)&=a_ns^n+a_{n-1}s^{n-1}+...a_0=(s-p_1)(s-p_2)...(s-p_n) \end{aligned} 一般有F(s)A(s)=A(s)B(s)=ansn+an1s(n1)+...a0bmsm+bm1sm1+...+b0(n>m)=ansn+an1sn1+...a0=(sp1)(sp2)...(spn)

Ⅰ. 当 A ( s ) = 0 A(s)=0 A(s)=0无重根时 F ( s ) F(s) F(s)可分解为 F ( s ) = C 1 s − p 1 + C 2 s − p 2 + . . . + C n s − p n = ∑ i = 1 n C i s − p i F(s)=\frac{C_1}{s-p_1}+\frac{C_2}{s-p_2}+...+\frac{C_n}{s-p_n}=\sum_{i=1}^{n}\frac{C_i}{s-p_i} F(s)=sp1C1+sp2C2+...+spnCn=i=1nspiCi

其中 : { C i = lim ⁡ s → p i ( s − p i ) F ( s ) = lim ⁡ s → p i ( s − p i ) b m S m + b m − 1 s m − 1 + . . . + b o ( s − p 1 ) . . . ( s − p i ) . . . ( s − p n ) C i = B ( s ) A ′ ( s ) ∣ s = p i = b m S m + b m − 1 s m − 1 + . . . + b o lim ⁡ s → p i ( s − p 1 ) . . . ( s − p i ) . . . ( s − p n ) ( s − p i ) f ( t ) = C 1 e p 1 t + C 2 e p 2 t + . . . + C n e p n t = ∑ i = t n C i e p i t \begin{aligned} 其中&:\begin{cases}C_i=\lim_{s\rightarrow p_i}(s-p_i)F(s)=\lim_{s\rightarrow p_i}(s-p_i)\frac{b_mS^m+b_{m-1}s^{m-1}+...+bo}{(s-p_1)...(s-p_i)...(s-p_n)}\\C_i=\frac{B(s)}{A'(s)}|_{s=p_i}=\frac{b_mS^m+b_{m-1}s^{m-1}+...+bo}{\lim_{s\rightarrow p_i}\frac{(s-p_1)...(s-p_i)...(s-p_n)}{(s-p_i)}}\end{cases}\\ f(t)&=C_1e^{p_1t}+C_2e^{p_2t}+...+C_ne^{p_nt}=\sum_{i=t}^nC_ie^{p_it} \end{aligned} 其中f(t): Ci=limspi(spi)F(s)=limspi(spi)(sp1)...(spi)...(spn)bmSm+bm1sm1+...+boCi=A(s)B(s)s=pi=limspi(spi)(sp1)...(spi)...(spn)bmSm+bm1sm1+...+bo=C1ep1t+C2ep2t+...+Cnepnt=i=tnCiepit

例2 已知 F ( s ) = s + 2 s 2 + 4 s + 3 , 求 f ( t ) = ? \quad 已知F(s)=\frac{s+2}{s^2+4s+3} ,求f(t)=? 已知F(s)=s2+4s+3s+2,f(t)=?

解 . F ( s ) = s + 2 s 2 + 4 s + 3 = C 1 ( s + 1 ) + C 2 s + 3 由留数法 C 1 = lim ⁡ s → − 1 ( s + 1 ) s + 2 ( s + 1 ) ( s + 3 ) = 1 2 C 2 = lim ⁡ s → − 3 ( s + 3 ) s + 2 ( s + 1 ) ( s + 3 ) = 1 2 ∴ F ( s ) = 1 2 s + 1 + 1 2 s + 3 f ( t ) = 1 2 e − t + 1 2 e − 3 t \begin{aligned} 解.\quad F(s)=\frac{s+2}{s^2+4s+3}=\frac{C_1}{(s+1)}+\frac{C2}{s+3} \\ \begin{aligned} 由留数法\quad C_1&=\lim_{s\rightarrow-1}(s+1)\frac{s+2}{(s+1)(s+3)}=\frac{1}{2}\\ C_2&=\lim_{s\rightarrow-3}(s+3)\frac{s+2}{(s+1)(s+3)}=\frac{1}{2} \end{aligned}\\ \therefore\quad F(s)=\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s+3} \quad f(t)=\frac{1}{2}e^{-t}+\frac{1}{2}e^{-3t} \end{aligned} .F(s)=s2+4s+3s+2=(s+1)C1+s+3C2由留数法C1C2=s1lim(s+1)(s+1)(s+3)s+2=21=s3lim(s+3)(s+1)(s+3)s+2=21F(s)=s+121+s+321f(t)=21et+21e3t

例3 已知 F ( s ) = s 2 + 5 s + 5 s 2 + 4 s + 3 , 求 f ( t ) = ? \quad 已知F(s)=\frac{s^2+5s+5}{s^2+4s+3}, 求f(t)=? 已知F(s)=s2+4s+3s2+5s+5,f(t)=?

解 . F ( s ) = ( s 2 + 4 s + 3 ) + s + 2 s 2 + 4 s + 3 = 1 + s + 2 ( s + 1 ) ( s + 3 ) = 1 + 1 2 s + 1 + 1 2 s + 3 f ( t ) = δ ( t ) + 1 2 e − t + 1 2 e − 3 t \begin{aligned} 解. \quad F(s)&=\frac{(s^2+4s+3)+s+2}{s^2+4s+3}=1+\frac{s+2}{(s+1)(s+3)}=1+\frac{\frac{1}{2}}{s+1}+\frac{\frac{1}{2}}{s+3}\\ f(t)&=\delta(t)+\frac{1}{2}e^{-t}+\frac{1}{2}e^{-3t} \end{aligned} .F(s)f(t)=s2+4s+3(s2+4s+3)+s+2=1+(s+1)(s+3)s+2=1+s+121+s+321=δ(t)+21et+21e3t

例4 已知 F ( s ) = s + 3 s 2 + 2 s + 2 , 求 f ( t ) = ? \quad 已知F(s)=\frac{s+3}{s^2+2s+2},求f(t)=? 已知F(s)=s2+2s+2s+3,f(t)=?

解一 . F ( s ) = s + 3 ( s + 1 + j ) ( s + 1 − j ) = C 1 s + 1 + j + C 2 s + 1 − j 由留数法 C 1 = lim ⁡ s → − ( 1 + j ) ( s + 1 + j ) s + 3 ( s + 1 + j ) ( s + 1 − j ) = 2 − j − 2 j C 2 = lim ⁡ s → ( j − 1 ) ( s + 1 − j ) s + 3 ( s + 1 + j ) ( s + 1 − j ) = 2 + j 2 j ∴ F ( s ) = 2 + j 2 j s + 1 − j − 2 − j 2 j s + 1 + j f ( t ) = 2 + j 2 j e − ( 1 − j ) t − 2 − j 2 j e − ( 1 + j ) t = e − t 2 j [ ( 2 + j ) e j t − ( 2 − j ) e − j t ] = e − t 2 j [ 2 j e j t + e − j t 2 + 4 j e j t − e − j t 2 j ] = e − t ⋅ [ cos ⁡ t + 2 sin ⁡ t ] 解一. \quad F(s)=\frac{s+3}{(s+1+j)(s+1-j)}=\frac{C_1}{s+1+j}+\frac{C_2}{s+1-j}\\ \begin{aligned} 由留数法 \quad C_1&=\lim_{s\rightarrow-(1+j)}(s+1+j)\frac{s+3}{(s+1+j)(s+1-j)}=\frac{2-j}{-2j}\\ C2&=\lim_{s\rightarrow(j-1)}(s+1-j)\frac{s+3}{(s+1+j)(s+1-j)}=\frac{2+j}{2j} \end{aligned}\\ \begin{aligned} \therefore F(s) &= \frac{\frac{2+j}{2j}}{s+1-j}-\frac{\frac{2-j}{2j}}{s+1+j}\quad f(t)=\frac{2+j}{2j}e^{-(1-j)t}-\frac{2-j}{2j}e^{-(1+j)t}\\ &=\frac{e^{-t}}{2j}[(2+j)e^{jt}-(2-j)e^{-jt}]=\frac{e^{-t}}{2j}[2j\frac{e^{jt}+e^{-jt}}{2}+4j\frac{e^{jt}-e^{-jt}}{2j}]\\&=e^{-t}·[\cos t+2\sin t] \end{aligned} 解一.F(s)=(s+1+j)(s+1j)s+3=s+1+jC1+s+1jC2由留数法C1C2=s(1+j)lim(s+1+j)(s+1+j)(s+1j)s+3=2j2j=s(j1)lim(s+1j)(s+1+j)(s+1j)s+3=2j2+jF(s)=s+1j2j2+js+1+j2j2jf(t)=2j2+je(1j)t2j2je(1+j)t=2jet[(2+j)ejt(2j)ejt]=2jet[2j2ejt+ejt+4j2jejtejt]=et[cost+2sint]

解二 . F ( s ) = s + 3 ( s + 1 ) 2 + 1 2 = s + 1 ( s + 1 ) 2 + 1 2 + 2 1 ( s + 1 ) 2 + 1 2 f ( t ) = e − t ⋅ [ cos ⁡ t + 2 sin ⁡ t ] \begin{aligned} 解二. \quad F(s)&=\frac{s+3}{(s+1)^2+1^2}=\frac{s+1}{(s+1)^2+1^2}+2\frac{1}{(s+1)^2+1^2}\\ f(t)&= e^{-t}·[\cos t+2\sin t] \end{aligned} 解二.F(s)f(t)=(s+1)2+12s+3=(s+1)2+12s+1+2(s+1)2+121=et[cost+2sint]

Ⅱ. 当 A ( s ) = ( s − p 1 ) . . . ( s − p n ) = 0 A(s)=(s-p_1)...(s-p_n)=0 A(s)=(sp1)...(spn)=0有重根时(设 p 1 p_1 p1为m重根, 其余为单根)

F ( s ) = C m ( s − p 1 ) m + C m − 1 ( s − p 1 ) m − 1 + . . . + C 1 s − p 1 + C m + 1 s − p m + 1 + . . . + C n s − p n F(s)=\frac{C_m}{(s-p_1)^m}+\frac{C_{m-1}}{(s-p_1)^{m-1}}+...+\frac{C_1}{s-p_1}+\frac{C_{m+1}}{s-p_{m+1}}+...+\frac{C_n}{s-p_n} F(s)=(sp1)mCm+(sp1)m1Cm1+...+sp1C1+spm+1Cm+1+...+spnCn

03_拉氏反变换&&传递函数_第2张图片

例5 F ( s ) = s + 2 s ( s + 1 ) 2 ( s + 3 ) , 求 f ( t ) = ? \quad F(s)=\frac{s+2}{s(s+1)^2(s+3)}, 求f(t)=? F(s)=s(s+1)2(s+3)s+2,f(t)=?

解 . F ( s ) = C 2 ( s + 1 ) 2 + C 1 s + 1 + C 3 s + C 4 s + 3 C 2 = lim ⁡ s → − 1 ( s + 1 ) 2 s + 2 s ( s + 1 ) 2 ( s + 3 ) = − 1 2 C 1 = lim ⁡ s → − 1 d d s [ ( s + 1 ) 2 s + 2 s ( s + 1 ) 2 ( s + 3 ) ] = lim ⁡ s → − 1 s ( s + 3 ) − ( s + 2 ) ( 2 s + 3 ) s 2 ( s + 3 ) 2 = − 3 4 解.\qquad F(s)=\frac{C_2}{(s+1)^2}+\frac{C_1}{s+1}+\frac{C_3}{s}+\frac{C_4}{s+3}\\ \begin{aligned} C_2&=\lim_{s\rightarrow-1}(s+1)^2\frac{s+2}{s(s+1)^2(s+3)}=-\frac{1}{2}\\ C_1&=\lim_{s\rightarrow-1}\frac{d}{ds}[(s+1)^2\frac{s+2}{s(s+1)^2(s+3)}]=\lim_{s\rightarrow-1}\frac{s(s+3)-(s+2)(2s+3)}{s^2(s+3)^2}=-\frac{3}{4} \end{aligned} .F(s)=(s+1)2C2+s+1C1+sC3+s+3C4C2C1=s1lim(s+1)2s(s+1)2(s+3)s+2=21=s1limdsd[(s+1)2s(s+1)2(s+3)s+2]=s1lims2(s+3)2s(s+3)(s+2)(2s+3)=43

例6 R − C R-C RC 电路计算

03_拉氏反变换&&传递函数_第3张图片

由 K V L u r = R i + u c i = C d u c d t u r = R C d u c d t + u c 由拉氏变换 ( R C s + 1 ) U c ( s ) = U r ( s ) + R C u c ( 0 ) 设 u r ( t ) = E 0 ⋅ 1 ( t ) U r ( s ) = E 0 s U c ( s ) = U r ( s ) R C s + 1 + R C u c ( 0 ) R C s + 1 = E 0 s ( R C s + 1 ) + R C u c ( 0 ) R C s + 1 = E 0 R C s ( s + 1 R C ) + u c ( 0 ) s + 1 R C = C 0 s + C 1 s + 1 R C + u c ( 0 ) s + 1 R C 又 { C 0 = lim ⁡ s → 0 s E 0 / R C s ( s + 1 R C ) = E 0 C 1 = lim ⁡ s → − 1 R C ( s + 1 R C ) E 0 / R C s ( s + 1 R C ) = − E 0 ∴ U c ( s ) = E 0 s − E 0 s + 1 R C + u c ( 0 ) s + 1 R C ∴ u c ( t ) = E 0 − [ E 0 − u c ( 0 ) ] ⋅ e − 1 R C \begin{aligned} 由KVL \qquad u_r &= Ri + u_c\\ i &=C\frac{du_c}{dt}\\u_r&=RC\frac{du_c}{dt}+u_c\\由拉氏变换\qquad (RCs+1)U_c(s)&=U_r(s)+RCu_c(0)\\设 \qquad u_r(t)&=E_0·1(t)\qquad U_r(s)=\frac{E_0}{s}\\ U_c(s)&=\frac{U_r(s)}{RCs+1}+\frac{RCu_c(0)}{RCs+1}=\frac{E_0}{s(RCs+1)}+\frac{RCu_c(0)}{RCs+1}\\&=\frac{\frac{E_0}{RC}}{s(s+\frac{1}{RC})}+\frac{u_c(0)}{s+\frac{1}{RC}}\\&=\frac{C_0}{s}+\frac{C_1}{s+\frac{1}{RC}}+\frac{u_c(0)}{s+\frac{1}{RC}}\\又\qquad& \begin{cases}C_0=\lim_{s\rightarrow0}s\frac{E_0/RC}{s(s+\frac{1}{RC})}=E_0\\C_1=\lim_{s\rightarrow-\frac{1}{RC}}(s+\frac{1}{RC})\frac{E_0/RC}{s(s+\frac{1}{RC})}=-E_0\end{cases}\\\therefore\qquad U_c(s)&=\frac{E_0}{s}-\frac{E_0}{s+\frac{1}{RC}}+\frac{u_c(0)}{s+\frac{1}{RC}}\\ \therefore \qquad u_c(t)&=E_0-[E_0-u_c(0)]·e^{-\frac{1}{RC}} \end{aligned} KVLuriur由拉氏变换(RCs+1)Uc(s)ur(t)Uc(s)Uc(s)uc(t)=Ri+uc=Cdtduc=RCdtduc+uc=Ur(s)+RCuc(0)=E01(t)Ur(s)=sE0=RCs+1Ur(s)+RCs+1RCuc(0)=s(RCs+1)E0+RCs+1RCuc(0)=s(s+RC1)RCE0+s+RC1uc(0)=sC0+s+RC1C1+s+RC1uc(0){C0=lims0ss(s+RC1)E0/RC=E0C1=limsRC1(s+RC1)s(s+RC1)E0/RC=E0=sE0s+RC1E0+s+RC1uc(0)=E0[E0uc(0)]eRC1

影响系统响应的因素

  • 输入 u r ( t ) u_r(t) ur(t) —— 规定 r ( t ) = 1 ( t ) r(t)=1(t) r(t)=1(t)
  • 初始条件 —— 规定0初始条件
  • 系统的结构参数 —— 自身特性决定系统性能

传递函数

基本概念

  • 传递函数的定义: 在零初始条件下, 线性定常系统输出量拉氏变换与输入量拉氏变换之比

    G ( s ) = C ( s ) R ( s ) \qquad G(s)=\frac{C(s)}{R(s)}\qquad \qquad\qquad\qquad\quad G(s)=R(s)C(s) 在这里插入图片描述

  • 传递函数的标准形式

    • 首1标准型:
      G ( s ) = K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) G(s)=\frac{K^*\prod_{j=1}^m(s-z_j)}{\prod_{i=1}^n(s-p_i)} G(s)=i=1n(spi)Kj=1m(szj)
  • 尾1标准型:
    G ( s ) = K ∏ k = 1 m 1 ( τ k s + 1 ) ∏ l = 1 m 2 ( τ 1 2 s 2 + 2 ξ τ l s + 1 ) s v ∏ i = 1 n 1 ( T i s + 1 ) ∏ j = 1 n 2 ( T j 2 s 2 + 2 ξ T j s + 1 ) G(s)=K\frac{\prod_{k=1}^{m_1}(\tau_ks+1)\prod_{l=1}^{m_2}(\tau_1^2s^2+2\xi\tau_ls+1)}{s^v\prod_{i=1}^{n_1}(T_is+1)\prod_{j=1}^{n_2}(T_j^2s^2+2\xi T_js+1)} G(s)=Ksvi=1n1(Tis+1)j=1n2(Tj2s2+2ξTjs+1)k=1m1(τks+1)l=1m2(τ12s2+2ξτls+1)

例7 已知 G ( s ) = 4 s − 4 s 3 + 3 s 2 + 2 s 将其化为首 1 、尾 1 标准型,并确定其增益 \quad已知G(s)=\frac{4s-4}{s^3+3s^2+2s}将其化为首1、尾1标准型,并确定其增益 已知G(s)=s3+3s2+2s4s4将其化为首1、尾1标准型,并确定其增益

解 . G ( s ) = 4 ( s − 1 ) s ( s + 1 ) ( s + 2 ) 首 1 标准型 G ( s ) = 2 ⋅ s − 1 s ( 1 2 s 2 + 3 2 s + 1 ) = 2 ⋅ s − 1 s ( 1 2 s + 1 ) ( s + 1 ) 尾 1 标准型 K = 2 \begin{aligned} 解.\qquad G(s)&=\frac{4(s-1)}{s(s+1)(s+2)}\qquad 首1标准型\\ G(s)&=2·\frac{s-1}{s(\frac{1}{2}s^2+\frac{3}{2}s+1)}=2·\frac{s-1}{s(\frac{1}{2}s+1)(s+1)}\quad 尾1标准型\\ K&=2 \end{aligned} .G(s)G(s)K=s(s+1)(s+2)4(s1)1标准型=2s(21s2+23s+1)s1=2s(21s+1)(s+1)s11标准型=2

传递函数的性质

  • G ( s ) G(s) G(s)是复数
  • G ( s ) G(s) G(s)只与系统自身的结构参数有关
  • G ( s ) G(s) G(s)与系统微分方程直接关联
  • G ( s ) = L [ k ( t ) ] G(s)=L[k(t)] G(s)=L[k(t)]
  • G ( s ) G(s) G(s) s s s平面上的零极点图相对应

传递函数的局限性

  • 原则上不反映非零初始条件时系统的全部信息
  • 适合于描述单输入/单输出系统
  • 只能用于表示线性定常系统

参考资料

【(新版!最清晰!去噪不炸耳!)自动控制原理 西北工业大学 卢京潮】

你可能感兴趣的:(自动控制原理笔记,自动化,考研,学习)