- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- cornerstonejs介绍
花花进修
DICOM医学影像查看器html5javascriptnpmyarn
Cornerstone.js是一个用于医疗成像应用程序的开源JavaScript库。它专门设计用于在Web浏览器中处理和显示DICOM(数字成像和通信在医学领域)图像。Cornerstone.js为开发者提供了强大的工具,可以轻松构建功能丰富的医学图像查看器,广泛应用于放射学、病理学、超声成像等领域。特点高性能图像渲染:支持大尺寸医学图像的快速渲染,包括CT扫描、MRI、X光片等。利用GPU加速(
- Unet改进10:在不同位置添加CPCA||通道先验卷积注意力机制
AICurator
Unet改进专栏深度学习神经网络unet语义分割
本文内容:在不同位置添加CPCA注意力机制目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介低对比度和显著的器官形状变化等特征经常出现在医学图像中。现有注意机制的自适应能力普遍不足,限制了医学影像分割性能的提高。本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取空间关系,同时保留先验通道。CPCA具有
- 2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合
顶呱呱程序
matlab工程应用matlab计算机视觉人工智能CS-MCA模型医学图像融合卷积稀疏的形态成分分析
基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析(CS-MCA)的稀疏表示(SR)模型,用于像素级医学图像融合。通过CS-MCA模型使用预先学习的字典获得其卡通和纹理组件的CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。2-79卷积稀疏的形态成分分析-小红书(xiaohongshu.com)
- fpga图像处理实战-白色顶帽变换
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
白色顶帽白色顶帽(WhiteTop-HatTransform),又称顶帽变换,是一种形态学操作,主要用于突出图像中比周围区域更亮的细节。它特别适用于从复杂背景中提取亮区域或对象。白色顶帽操作在图像处理中的应用广泛,特别是在医学图像、工业检测和其他需要增强特定亮区域的应用中。基本原理白色顶帽变换是通过将图像进行开运算(OpeningOperation)后,再从原始图像中减去开运算的结果来实现的。开运
- 线性代数在卷积神经网络(CNN)中的体现
科学的N次方
人工智能线性代数cnn人工智能
案例:深度学习中的卷积神经网络(CNN)在图像识别领域,卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一个广泛应用深度学习模型,它在人脸识别、物体识别、医学图像分析等方面取得了显著成效。CNN中的核心操作——卷积,就是一个直接体现线性代数应用的例子。假设我们正在训练一个用于识别猫和狗的图像分类器,原始输入是一幅RGB彩色图片,可以将其视为一个高度、宽度和通道数(R
- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- e_ophtha_MA眼底数据集—根据微血管瘤标注Mask绘制Contour轮廓图
curemoon
眼底医学图像处理:微血管瘤Microaneurysm检测分割采用数据集e_ophtha中的e_ophtha_MA,此数据集可从互联网下载实现根据微血管瘤标注Mask,在原图绘制轮廓图,以直观了解微血管瘤,以便检测分割微血管瘤1.可展示数据集中原图和绘制轮廓图的并列拼接图2.可保存Mask,原图,根据标注绘制轮廓图的眼底图的拼接图1.原图和绘制轮廓图的并列拼接图2.保存Mask,原图,根据标注绘制轮
- 2024年生物医学、医学图像与信号处理国际会议(ICBMISP2024)
anana_xu
信号处理大数据人工智能智慧城市自动化制造
2024年生物医学、医学图像与信号处理国际会议(ICBMISP2024)会议简介2024年国际生物医学、医学成像和信号处理会议(ICBMISP2024)很高兴邀请您提交主题为“生物医学、医学图像和信号处理的当前挑战和未来前景”的原稿。通过ICBMISP2024,生物医学、医学成像和信号处理三个重要领域的完美融合将为研究人员、农学家、政策制定者、年轻人,特别是行业专家提供一个平台,让他们聚集、分享经
- 压缩感知——革新数据采集的科学魔法
superdont
计算机视觉人工智能算法计算机视觉opencv系统地学习Pythonpython机器学习
引言:在数字时代,数据以及数据的收集和处理无处不在。压缩感知(CompressedSensing,CS)是一种新兴的数学框架,它挑战了我们传统上对数据采集和压缩的看法,给医学图像、天文观测、环境监测等领域带来了颠覆性的影响。但到底什么是压缩感知,它又为何如此重要呢?本文将为你深入浅出地解释。压缩感知压缩感知(CS)与传统数据压缩的差异:传统信息论告诉我们,数据被采集后通常需要进行压缩以便于存储和传
- CT-CTA不理解的点
qq_1248742467
pytorch
由于是将训练CT数据的模型用来跑MRI,因此有些操作不是很理解,并且也不会,请教哈各位大佬Question1首先使用一个生成模型netG_A2B将输入real_A2转换成输出fake_B,这通常是在如图像到图像的转换任务中常见的做法,例如在使用对抗生成网络(GANs)来增强医学图像或改变图像风格的应用中。然后利用函数to_windowdata将real_B和生成的fake_B通过窗宽(WW)和窗位
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- PyQt Python 使用 VTK ITK 进行分割 三维重建 医学图像可视化系统 流程
恋恋西风
PythonpyqtpythonVTKITK
效果:重建流程:1.输入可以读取DICOM,niinrrd等数据设置读取器以加载DICOM图像系列。使用itk::GDCMImageIO作为DICOM图像的输入输出接口。使用itk::GDCMSeriesFileNames获取指定路径下的所有DICOM文件名。使用itk::ImageSeriesReader读取DICOM图像序列,并将其作为3D图像存储。2.分割创建itk::ThresholdIm
- ssm/php/node/python论文投稿系统
果果 程序设计
php开发语言
本系统(程序+源码)带文档lw万字以上文末可领取本课题的JAVA源码参考系统程序文件列表系统的选题背景和意义选题背景段落:随着人工智能技术的飞速发展,深度学习作为其重要分支之一,在图像处理和分析领域展现出了巨大的潜力。尤其是在医学诊断领域,传统的诊断方法依赖于医生的经验和知识积累,这不仅对医生的个人能力提出了较高要求,也存在一定的主观误差。深度学习的图像识别技术通过训练大量的医学图像数据,能够辅助
- 机器学习:BN层介绍及深入理解
是Dream呀
机器学习笔记神经网络机器学习人工智能
前言:BN在深度网络训练过程中是非常好用的trick,在笔试中也很常考,而之前只是大概知道它的作用,很多细节并不清楚,因此希望用这篇文章彻底解决揭开BN的面纱。BN层的由来与概念讲解BN之前,我们需要了解BN是怎么被提出的。在机器学习领域,数据分布是很重要的概念。如果训练集和测试集的分布很不相同,那么在训练集上训练好的模型,在测试集上应该不奏效(比如用ImageNet训练的分类网络去在灰度医学图像
- 医学综合类SCI期刊,21天录用,就是这么快!
Unionpub学术
底了,许多新老作者都会问到小编“有1个月就能录用的期刊吗?真的很着急”,的确现在时间紧迫,项目验收结项,基金收回,马上2020年3月申项。可是,论文都是有一定发表周期的,从论文提交-一审-修改-二审-到论文录用,一般需要3个月左右的时间,也有少数进展比较快的期刊,所以小编根据大家的需求,特分这本医学类的期刊,发表经验-21天录用:一、期刊简介JCR4区医学图像与健康信息类【期刊简介】:欧美,IF:
- 三维重建 阈值分割 3D可视化 医学图像分割 CT图像分割及重建系统 可视化编程技术及应用
恋恋西风
VTK毕业设计和论文qt三维重建VTKITK图像分割
一、概述此系统实现了常见的VTK四视图,实现了很好的CT图像分割,可以用于骨骼,头部,肺部,脂肪等分割,,并且通过三维重建实现可视化。使用了第三方库VTK,ITK实现分割和生不重建。窗口分为(横断面)、冠状面、矢状面,和3D窗口;包含了体绘制和面绘制;效果:CT分割重建二、开发环境操作系统:Windows10:工具:Qt5.12.4+VisualStudio2017,使用开源库:VTK-8.1IT
- 医学图像隐私保护
superdont
图像加密计算机视觉
随着数字医疗技术的快速发展,医学图像例如X光片、CT扫描、MRI及超声波扫描已成为现代医疗診断和治療的基石。然而,同时这些包含敏感个人信息的图像也面临着隐私和安全方面的挑战。随着数据泄露事件的增多,医学图像隐私保护变得尤为重要。从技术层面来看,医学图像隐私保护通常包括以下方面:1.数据加密:为了保护数据在传输过程中不被未经授权的人窃取或篡改,可以使用各种加密标准,如SSL/TLS、AES和RSA等
- 【深度学习】: 脑部MRI图像分割
X.AI666
深度学习深度学习人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例4:脑部MRI图像分割相关知识点:语义分割、医学图像处理(skimage,medpy)、可视化(matplotlib)1任务
- 医学图像增强——基于同态滤波方法(Matlab代码实现)
然哥爱编程
matlab图像处理开发语言
目录1概述2运行结果3参考文献4Matlab代码1概述医学图像增强——基于同态滤波方法(Matlab代码实现)目的:改善医学图像质量,使低对比度的图像得到增强。方法:利用Matlab,采用灰度直方图均衡化和灰度直方图规定化的方法对一幅X线图像进行增强处理,并比较它们的增强效果。结果:用直方图均衡化和规定化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。直方图均衡化对于
- MATLAB环境下使用同态滤波方法进行医学图像增强
哥廷根数学学派2023
matlab计算机视觉开发语言算法图像处理机器学习
目前图像增强技术主要分为基于空间域和基于频率域2大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- 基于matlab的医学图像同态滤波仿真
Simuworld
MATLAB仿真案例matlab医学图像同态滤波
目录1.算法仿真效果2.MATLAB源码3.算法概述4.部分参考文献1.算法仿真效果matlab2022a仿真结果如下:
- MATLAB环境下基于同态滤波方法的医学图像增强
哥廷根数学学派
信号处理图像处理深度学习matlab算法计算机视觉图像处理信号处理
目前图像增强技术主要分为基于空间域和基于频率域两大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- 【计算机视觉 | 图像分割】通用AI大模型Segment Anything在医学影像分割的性能究竟如何?
旅途中的宽~
计算机视觉人工智能计算机视觉医学图像SA模型
最近看到了一篇论文:论文地址为:https://arxiv.org/pdf/2304.14660.pdf这篇文章用来探究最近大火的大模型SA在医学图像上的效果。文章目录一、前言二、数据集展示三、方法展示四、结果分析一、前言近半年来,ChatGPT、DALL·E等引发了大规模基础AI模型的狂潮。4月初,MetaAI发布第一个用于图像分割的大规模基础模型SegmentAnythingModel(SAM
- Redis面试题45
CrazyMax_zh
redis
人工智能在医疗领域的应用有哪些?答:人工智能在医疗领域的应用具有巨大的潜力,可以改善医疗诊断、治疗和健康管理等方面。以下是一些人工智能在医疗领域的应用:早期疾病诊断:人工智能可以通过分析患者的医学图像和病历数据,辅助医生进行早期疾病诊断。例如在肿瘤早期发现和乳腺癌筛查方面,人工智能能够帮助医生提高诊断准确性。智能辅助决策:人工智能可以为医生提供决策支持,根据大量的医学知识和临床数据,推荐最佳的治疗
- 医学图像安全性概述
superdont
图像加密计算机视觉图像处理人工智能深度学习
左侧是医疗信息共享系统,右侧是计算机辅助诊疗策略:medicalimagesharingsecurity(MISS)computer-aideddiagnostic(CAD)CADsecurity(CADS)一般在信息安全中强调CIA需求,具体为:Confidentiality.Thisisthesetofrulesthatlimitaccesstoinformation.Inthemedical
- 快准狠!在3D Slicer中,使用TotalSegmentator扩展可在1分钟内自动分割全身117个器官
Tina姐
标注软件医学图像分割医学图像人工智能深度学习
本系列涵盖从3DSlicer医学图像查看器的基础使用到高级自动分割扩展程序的内容(从入门到高阶!),具体包括软件安装、基础使用教程,自动分割扩展(totalsegmentator,monailabel)快速标注数据。Tina姐:强烈建议做图像分割的宝宝们好好学习,跟着Tina姐涨姿势!本教程耗时一周完成,特别感谢我的老板给予技术支持。如果对你有帮助,转发支持一下这是该系列的第二篇,在这篇博文中,我
- 3D Slicer-最强大的开源医学图像分割工具简要概述
Tina姐
标注软件医学图像分割医学图像深度学习人工智能
3DSlicer-最强大的开源医学图像分割工具简要概述本系列涵盖从3DSlicer医学图像查看器的基础使用到高级自动分割扩展程序的内容(从入门到高阶!),具体包括软件安装、基础使用教程,自动分割扩展(totalsegmentator,monailabel)快速标注数据。我们将学习3DSlicer的基础知识,并熟悉其内置模块、扩展和图像处理工具。熟悉这些工具和3DSlicer工作流程将使我们能够了解
- CVPR 2024:在笔记本终端分割一切医学图像挑战赛进行中
Tina姐
计算机视觉人工智能深度学习医学图像
竞赛题目:CVPR2024:SEGMENTANYTHINGINMEDICALIMAGESONLAPTOP组织者:Junma(
[email protected])主办单位:JunMa(多伦多大学)YuyinZhou(加州大学圣克鲁斯分校)BoWang(多伦多大学)比赛概述医学图像分割是临床实践中的关键步骤,有助于准确量化解剖结构和病理区域。该领域目前正在经历范式转变,从为单个任务设计的专用模型转
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l