计算机笔记--【Netty网络编程②】

文章目录

    • 前言
  • 二、Netty 入门
    • 1. 概述
      • 1.1 Netty 是什么?
      • 1.2 Netty 的作者
      • 1.3 Netty 的地位
      • 1.4 Netty 的优势
    • 2. Hello World
      • 2.1 目标
      • 2.2 服务器端
      • 2.3 客户端
      • 2.4 流程梳理
        • 提示
    • 3. 组件
      • 3.1 EventLoop
        • 优雅关闭
        • 演示 NioEventLoop 处理 io 事件
        • handler 执行中如何换人?
        • 演示 NioEventLoop 处理普通任务
        • 演示 NioEventLoop 处理定时任务
      • 3.2 Channel
        • ChannelFuture
        • CloseFuture
        • 异步提升的是什么
      • 3.3 Future & Promise
        • 例1
        • 例2
        • 例3
        • 例4
        • 例5
        • 例6
      • 3.4 Handler & Pipeline
      • 3.5 ByteBuf
        • 1)创建
        • 2)直接内存 vs 堆内存
        • 3)池化 vs 非池化
        • 4)组成
        • 5)写入
        • 6)扩容
        • 7)读取
        • 8)retain & release
        • 9)slice
        • 10)duplicate
        • 11)copy
        • 12)CompositeByteBuf
        • 13)Unpooled
        • ByteBuf 优势
    • 4. 双向通信
      • 4.1 练习
      • 读和写的误解

前言

本笔记主要依托于B站满老师的视频以及自己所阅读的书籍。如果本文对你有帮助的话,请大家多多给满老师一键三连,给本文Star,谢谢。

参考视频:https://www.bilibili.com/video/BV16J411h7Rd
参考文档:https://github.com/Seazean/JavaNote

二、Netty 入门

1. 概述

1.1 Netty 是什么?

Netty is an asynchronous event-driven network application framework
for rapid development of maintainable high performance protocol servers & clients.

Netty 是一个异步的(多路复用模拟异步)、基于事件驱动的网络应用框架,用于快速开发可维护、高性能的网络服务器和客户端。

1.2 Netty 的作者

计算机笔记--【Netty网络编程②】_第1张图片

他还是另一个著名网络应用框架 Mina 的重要贡献者

1.3 Netty 的地位

Netty 在 Java 网络应用框架中的地位就好比:Spring 框架在 JavaEE 开发中的地位。

以下的框架都使用了 Netty,因为它们有网络通信需求!

  • Cassandra - nosql 数据库(分布式数据库,集群内网络通信)
  • Spark - 大数据分布式计算框架
  • Hadoop - 大数据分布式存储框架
  • RocketMQ - ali 开源的消息队列
  • ElasticSearch - 全文搜索引擎
  • gRPC - rpc 框架
  • Dubbo - rpc 框架
  • Spring 5.x - flux api 完全抛弃了 tomcat ,使用 netty 作为服务器端
  • Zookeeper - 分布式协调框架

1.4 Netty 的优势

  • Netty(底层基于NIO) vs NIO,单独用 NIO 工作量大,bug 多
    • 需要自己构建协议
    • 解决 TCP 传输问题,如粘包、半包
    • epoll 空轮询导致 CPU 100%
    • 对 API 进行增强,使之更易用,如 FastThreadLocal => ThreadLocal,ByteBuf => ByteBuffer
  • Netty vs 其它网络应用框架
    • Mina 由 apache 维护,将来 3.x 版本可能会有较大重构,破坏 API 向下兼容性,Netty 的开发迭代更迅速,API 更简洁、文档更优秀
    • 久经考验,16年,Netty 版本
      • 2.x 2004
      • 3.x 2008
      • 4.x 2013
      • 5.x 已废弃(没有明显的性能提升,维护成本高)

2. Hello World

2.1 目标

开发一个简单的服务器端和客户端

  • 客户端向服务器端发送 hello, world
  • 服务器仅接收,不返回

加入依赖

<dependency>
    <groupId>io.nettygroupId>
    <artifactId>netty-allartifactId>
    <version>4.1.39.Finalversion>
dependency>

2.2 服务器端

带注释的完整代码:

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringDecoder;
import io.netty.handler.logging.LoggingHandler;

public class HelloServer {
    public static void main(String[] args) {
        // 1. 启动器,负责组装 netty 组件,启动服务器
        new ServerBootstrap()
            // 2. BossEventLoop, WorkerEventLoop(selector,thread), group 组
            .group(new NioEventLoopGroup())
            // 3. 选择 服务器的 ServerSocketChannel 实现
            .channel(NioServerSocketChannel.class) // OIO BIO
            // 4. boss 负责处理连接 worker(child) 负责处理读写,决定了 worker(child) 能执行哪些操作(handler)
            .childHandler(
                    // 5. channel 代表和客户端进行数据读写的通道 Initializer 初始化,负责添加别的 handler
                new ChannelInitializer<NioSocketChannel>() {
                @Override
                protected void initChannel(NioSocketChannel ch) throws Exception {
                    // 6. 添加具体 handler
                    ch.pipeline().addLast(new LoggingHandler());
                    ch.pipeline().addLast(new StringDecoder()); // 将 ByteBuf 转换为字符串
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() { // 自定义 handler
                        @Override // 读事件
                        public void channelRead(ChannelHandlerContext ctx,Object msg) throws Exception {
                            System.out.println(msg); // 打印上一步转换好的字符串
                        }
                    });
                }
            })
            // 7. 绑定监听端口
            .bind(8080);
    }
}

同志们,我是二刷,一定要记住这些格式,都是固定写法,后面全部都是这种格式,不同的就是使用哪些处理器

new ServerBootstrap()
    .group(new NioEventLoopGroup()) // 1
    .channel(NioServerSocketChannel.class) // 2
    .childHandler(new ChannelInitializer<NioSocketChannel>() { // 3
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new StringDecoder()); // 5
            ch.pipeline().addLast(new SimpleChannelInboundHandler<String>() { // 6
                @Override
                protected void channelRead0(ChannelHandlerContext ctx, String msg) {
                    System.out.println(msg);
                }
            });
        }
    })
    .bind(8080); // 4

代码解读

  • 1 处,创建 NioEventLoopGroup,可以简单理解为 线程池 + Selector 后面会详细展开

  • 2 处,选择服务 Scoket 实现类,其中 NioServerSocketChannel 表示基于 NIO 的服务器端实现,其它实现还有 在这里插入图片描述

  • 3 处,为啥方法叫 childHandler,是接下来添加的处理器都是给 SocketChannel 用的,而不是给 ServerSocketChannel。ChannelInitializer 处理器(仅执行一次),它的作用是待客户端 SocketChannel 建立连接后,执行 initChannel 以便添加更多的处理器

  • 4 处,ServerSocketChannel 绑定的监听端口

  • 5 处,SocketChannel 的处理器,解码 ByteBuf => String

  • 6 处,SocketChannel 的业务处理器,使用上一个处理器的处理结果

2.3 客户端

带注释的完整代码:

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringEncoder;

import java.net.InetSocketAddress;

public class HelloClient {
    public static void main(String[] args) throws InterruptedException {
        // 1. 启动类
        new Bootstrap()
            // 2. 添加 EventLoop
            .group(new NioEventLoopGroup())
            // 3. 选择客户端 channel 实现
            .channel(NioSocketChannel.class)
            // 4. 添加处理器
            .handler(new ChannelInitializer<NioSocketChannel>() {
                @Override // 在连接建立后被调用 initChannel
                protected void initChannel(NioSocketChannel ch) throws Exception {
                    // 客户端需要以个编码器
                    ch.pipeline().addLast(new StringEncoder());
                }
            })
            // 5. 连接到服务器
            .connect(new InetSocketAddress("localhost", 8080))
            .sync()
            .channel()
            // 6. 向服务器发送数据
            .writeAndFlush("hello, world");
    }
}
new Bootstrap()
    .group(new NioEventLoopGroup()) // 1
    .channel(NioSocketChannel.class) // 2
    .handler(new ChannelInitializer<Channel>() { // 3
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder()); // 8
        }
    })
    .connect("127.0.0.1", 8080) // 4
    .sync() // 5
    .channel() // 6
    .writeAndFlush(new Date() + ": hello world!"); // 7

代码解读

  • 1 处,创建 NioEventLoopGroup,同 Server

  • 2 处,选择客户 Socket 实现类,NioSocketChannel 表示基于 NIO 的客户端实现,其它实现还有
    在这里插入图片描述

  • 3 处,添加 SocketChannel 的处理器,ChannelInitializer 处理器(仅执行一次),它的作用是待客户端 SocketChannel 建立连接后,执行 initChannel 以便添加更多的处理器

  • 4 处,指定要连接的服务器和端口

  • 5 处,Netty 中很多方法都是异步的,如 connect,这时需要使用 sync 方法等待 connect 建立连接完毕

  • 6 处,获取 channel 对象,它即为通道抽象,可以进行数据读写操作

  • 7 处,写入消息并清空缓冲区

  • 8 处,消息会经过通道 handler 处理,这里是将 String => ByteBuf 发出

  • 数据经过网络传输,到达服务器端,服务器端 5 和 6 处的 handler 先后被触发,走完一个流程

2.4 流程梳理

计算机笔记--【Netty网络编程②】_第2张图片

提示

一开始需要树立正确的观念

  • 把 channel 理解为数据的通道
  • 把 msg 理解为流动的数据,最开始输入是 ByteBuf,但经过 pipeline (流水线,多个 Handler 连在一起)的加工,会变成其它类型对象,最后输出又变成 ByteBuf
  • 把 handler 理解为数据的处理工序
    • 工序有多道,合在一起就是 pipeline,pipeline 负责发布事件(读、读取完成…)传播给每个 handler, handler 对自己感兴趣的事件进行处理(重写了相应事件处理方法)
    • handler 分 Inbound 和 Outbound 两类(入站处理器,表示进入服务器,出站处理器,表示出服务器)
  • 把 eventLoop 理解为处理数据的工人
    • 工人可以管理多个 channel 的 io 操作,并且一旦工人负责了某个 channel,就要负责到底(绑定)
    • 工人既可以执行 io 操作,也可以进行任务处理,每位工人有任务队列,队列里可以堆放多个 channel 的待处理任务,任务分为普通任务、定时任务
    • 工人按照 pipeline 顺序,依次按照 handler 的规划(代码)处理数据,可以为每道工序指定不同的工人

3. 组件

3.1 EventLoop

事件循环对象

EventLoop 本质是一个单线程执行器(同时维护了一个 Selector),里面有 run 方法处理 Channel 上源源不断的 io 事件

它的继承关系比较复杂

  • 一条线是继承自 j.u.c.ScheduledExecutorService 因此包含了线程池中所有的方法
  • 另一条线是继承自 netty 自己的 OrderedEventExecutor
    • 提供了 boolean inEventLoop(Thread thread) 方法判断一个线程是否属于此 EventLoop
    • 提供了 parent 方法来看看自己属于哪个 EventLoopGroup

事件循环组

EventLoopGroup 是一组 EventLoop,Channel 一般会调用 EventLoopGroup 的 register 方法来绑定其中一个 EventLoop,后续这个 Channel 上的 io 事件都由此 EventLoop 来处理(保证了 io 事件处理时的线程安全)

  • 继承自 netty 自己的 EventExecutorGroup
    • 实现了 Iterable 接口提供遍历 EventLoop 的能力
    • 另有 next 方法获取集合中下一个 EventLoop

完整代码:

import io.netty.channel.DefaultEventLoopGroup;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.util.NettyRuntime;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.TimeUnit;

@Slf4j
public class TestEventLoop {
    public static void main(String[] args) {
        // 1. 创建事件循环组
        EventLoopGroup group = new NioEventLoopGroup(2); // io 事件,普通任务,定时任务
//        EventLoopGroup group = new DefaultEventLoopGroup(); // 普通任务,定时任务
        // 2. 获取下一个事件循环对象
        System.out.println(group.next());
        System.out.println(group.next());
        System.out.println(group.next());
        System.out.println(group.next());
//        System.out.println(NettyRuntime.availableProcessors());  // 8核16线程,打印最大线程

        // 3. 执行普通任务,可以用作异步处理,EventLoopGroup 在底层是单线程的线程池
        /*group.next().execute(() -> {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug("ok");
        });*/

        // 4. 执行定时任务
        group.next().scheduleAtFixedRate(() -> {
            log.debug("ok");
//            log.debug(group.next().toString());
        }, 0, 1, TimeUnit.SECONDS);

        log.debug("main");
    }
}

以一个简单的实现为例:

// 内部创建了两个 EventLoop, 每个 EventLoop 维护一个线程
DefaultEventLoopGroup group = new DefaultEventLoopGroup(2);
System.out.println(group.next());
System.out.println(group.next());
System.out.println(group.next());

输出

io.netty.channel.DefaultEventLoop@60f82f98
io.netty.channel.DefaultEventLoop@35f983a6
io.netty.channel.DefaultEventLoop@60f82f98

也可以使用 for 循环

DefaultEventLoopGroup group = new DefaultEventLoopGroup(2);
for (EventExecutor eventLoop : group) {
    System.out.println(eventLoop);
}

输出

io.netty.channel.DefaultEventLoop@60f82f98
io.netty.channel.DefaultEventLoop@35f983a6
优雅关闭

优雅关闭 shutdownGracefully 方法。该方法会首先切换 EventLoopGroup 到关闭状态从而拒绝新的任务的加入,然后在任务队列的任务都处理完成后,停止线程的运行。从而确保整体应用是在正常有序的状态下退出的

演示 NioEventLoop 处理 io 事件

服务端完整代码:

import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import lombok.extern.slf4j.Slf4j;

import java.nio.charset.Charset;

@Slf4j
public class EventLoopServer {
    public static void main(String[] args) {
        new ServerBootstrap()
                .group(new NioEventLoopGroup())
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        ch.pipeline().addLast("handler1", new ChannelInboundHandlerAdapter() {
                            @Override                                         // ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                ByteBuf buf = (ByteBuf) msg;
                                log.debug(buf.toString(Charset.defaultCharset()));  // 最好在服务端和客户端强制指定字符集 defaultCharset 的不一样
                                ctx.fireChannelRead(msg); // 让消息传递给下一个handler
                            }
                        });
                        /*.addLast(group, "handler2", new ChannelInboundHandlerAdapter() {
                            @Override                                         // ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                ByteBuf buf = (ByteBuf) msg;
                                log.debug(buf.toString(Charset.defaultCharset()));
                            }
                        });*/
                    }
                })
                .bind(8080);
    }
}

客户端完整代码:

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringEncoder;

import java.net.InetSocketAddress;

public class MyEventLoopClient {
    public static void main(String[] args) throws InterruptedException {
        // 1. 启动类
        Channel channel = new Bootstrap()
                // 2. 添加 EventLoop
                .group(new NioEventLoopGroup())
                // 3. 选择客户端 channel 实现
                .channel(NioSocketChannel.class)
                // 4. 添加处理器
                .handler(new ChannelInitializer<NioSocketChannel>() {
                    @Override // 在连接建立后被调用 initChannel
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        // 客户端需要以个编码器
                        ch.pipeline().addLast(new StringEncoder());
                    }
                })
                // 5. 连接到服务器
                .connect(new InetSocketAddress("localhost", 8080))
                .sync()
                .channel();
        System.out.println(channel);
        System.out.println("");
    }
}

客户端进入 debug 模式调试:
计算机笔记--【Netty网络编程②】_第3张图片
计算机笔记--【Netty网络编程②】_第4张图片
计算机笔记--【Netty网络编程②】_第5张图片
计算机笔记--【Netty网络编程②】_第6张图片
计算机笔记--【Netty网络编程②】_第7张图片
计算机笔记--【Netty网络编程②】_第8张图片

  • 还好吧,概念理清就可以了,NioEventLoop虽然是单一线程池,所以可以把它看作一个线程,而NioEventGroup则是容纳这些线程的线程池。它负责调度线程(NioEventLoop)执行任务
  • 可以说NioEventLoop就是对普通线程的一层封装,可以让线程不仅能够执行普通、定时任务,也能进行网络IO的处理

细分1:boss 只负责 ServerSocketChannel 上 accept 事件 worker 只负责 socketChannel 上的读写 .group(new NioEventLoopGroup(), new NioEventLoopGroup(2))
服务端代码(客户端不变):

import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import lombok.extern.slf4j.Slf4j;

import java.nio.charset.Charset;

@Slf4j
public class EventLoopServer {
    public static void main(String[] args) {
        // 细分2:创建一个独立的 EventLoopGroup
        // EventLoopGroup group = new DefaultEventLoopGroup(); // 不处理IO操作
        new ServerBootstrap()
                // boss 和 worker
                // 细分1:boss 只负责 ServerSocketChannel 上 accept 事件     worker 只负责 socketChannel 上的读写
                .group(new NioEventLoopGroup(), new NioEventLoopGroup(2))
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        ch.pipeline().addLast("handler1", new ChannelInboundHandlerAdapter() {
                            @Override                                         // ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                ByteBuf buf = (ByteBuf) msg;
                                log.debug(buf.toString(Charset.defaultCharset()));  // 最好在服务端和客户端强制指定字符集 defaultCharset 的不一样
                                ctx.fireChannelRead(msg); // 让消息传递给下一个handler
                            }
                        });
                        /*.addLast(group, "handler2", new ChannelInboundHandlerAdapter() {
                            @Override                                         // ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                ByteBuf buf = (ByteBuf) msg;
                                log.debug(buf.toString(Charset.defaultCharset()));
                            }
                        });*/
                    }
                })
                .bind(8080);
    }
}

结果:
计算机笔记--【Netty网络编程②】_第9张图片
某个handler的耗时较长,最好不要让它占用worker的NIO线程,否则会影响NIO的读写操作,再次细分 细分2:创建一个独立的 EventLoopGroup,EventLoopGroup group = new DefaultEventLoopGroup();

完整服务端代码(客户端与上面一样):

import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import lombok.extern.slf4j.Slf4j;

import java.nio.charset.Charset;

@Slf4j
public class EventLoopServer {
    public static void main(String[] args) {
        // 细分2:创建一个独立的 EventLoopGroup
        EventLoopGroup group = new DefaultEventLoopGroup();
        new ServerBootstrap()
                // boss 和 worker
                // 细分1:boss 只负责 ServerSocketChannel 上 accept 事件     worker 只负责 socketChannel 上的读写
                .group(new NioEventLoopGroup(), new NioEventLoopGroup(2))
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        ch.pipeline().addLast("handler1", new ChannelInboundHandlerAdapter() {
                            @Override                                         // ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                ByteBuf buf = (ByteBuf) msg;
                                log.debug(buf.toString(Charset.defaultCharset()));  // 最好在服务端和客户端强制指定字符集 defaultCharset 的不一样
                                ctx.fireChannelRead(msg); // 让消息传递给下一个handler
                            }
                        })
                        .addLast(group, "handler2", new ChannelInboundHandlerAdapter() {  // 指定非 NIO 的group
                            @Override                                         // ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                ByteBuf buf = (ByteBuf) msg;
                                log.debug(buf.toString(Charset.defaultCharset()));
                            }
                        });
                    }
                })
                .bind(8080);
    }
}

计算机笔记--【Netty网络编程②】_第10张图片

这里所谓的长时间是指完成这一件事其中有些操作比较耗时,两个handler都处理是正确的,因为第一个handler可能要对传来的数据封装,第二个handler要根据第一个handler封装好的数据

服务器端两个 nio worker 工人,

new ServerBootstrap()
    .group(new NioEventLoopGroup(1), new NioEventLoopGroup(2))
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf byteBuf = msg instanceof ByteBuf ? ((ByteBuf) msg) : null;
                    if (byteBuf != null) {
                        byte[] buf = new byte[16];
                        ByteBuf len = byteBuf.readBytes(buf, 0, byteBuf.readableBytes());
                        log.debug(new String(buf));
                    }
                }
            });
        }
    }).bind(8080).sync();

客户端,启动三次,分别修改发送字符串为 zhangsan(第一次),lisi(第二次),wangwu(第三次)

public static void main(String[] args) throws InterruptedException {
    Channel channel = new Bootstrap()
            .group(new NioEventLoopGroup(1))
            .handler(new ChannelInitializer<NioSocketChannel>() {
                @Override
                protected void initChannel(NioSocketChannel ch) throws Exception {
                    System.out.println("init...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                }
            })
            .channel(NioSocketChannel.class).connect("localhost", 8080)
            .sync()
            .channel();

    channel.writeAndFlush(ByteBufAllocator.DEFAULT.buffer().writeBytes("wangwu".getBytes()));
    Thread.sleep(2000);
    channel.writeAndFlush(ByteBufAllocator.DEFAULT.buffer().writeBytes("wangwu".getBytes()));

最后输出

22:03:34 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - zhangsan       
22:03:36 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - zhangsan       
22:05:36 [DEBUG] [nioEventLoopGroup-3-2] c.i.o.EventLoopTest - lisi           
22:05:38 [DEBUG] [nioEventLoopGroup-3-2] c.i.o.EventLoopTest - lisi           
22:06:09 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - wangwu        
22:06:11 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - wangwu         

可以看到两个工人轮流处理 channel,但工人与 channel 之间进行了绑定

计算机笔记--【Netty网络编程②】_第11张图片

再增加两个非 nio 工人

DefaultEventLoopGroup normalWorkers = new DefaultEventLoopGroup(2);
new ServerBootstrap()
    .group(new NioEventLoopGroup(1), new NioEventLoopGroup(2))
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch)  {
            ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
            ch.pipeline().addLast(normalWorkers,"myhandler",
              new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf byteBuf = msg instanceof ByteBuf ? ((ByteBuf) msg) : null;
                    if (byteBuf != null) {
                        byte[] buf = new byte[16];
                        ByteBuf len = byteBuf.readBytes(buf, 0, byteBuf.readableBytes());
                        log.debug(new String(buf));
                    }
                }
            });
        }
    }).bind(8080).sync();

客户端代码不变,启动三次,分别修改发送字符串为 zhangsan(第一次),lisi(第二次),wangwu(第三次)

输出

22:19:48 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x251562d5, L:/127.0.0.1:8080 - R:/127.0.0.1:52588] REGISTERED
22:19:48 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x251562d5, L:/127.0.0.1:8080 - R:/127.0.0.1:52588] ACTIVE
22:19:48 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x251562d5, L:/127.0.0.1:8080 - R:/127.0.0.1:52588] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 7a 68 61 6e 67 73 61 6e                         |zhangsan        |
+--------+-------------------------------------------------+----------------+
22:19:48 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x251562d5, L:/127.0.0.1:8080 - R:/127.0.0.1:52588] READ COMPLETE
22:19:48 [DEBUG] [defaultEventLoopGroup-2-1] c.i.o.EventLoopTest - zhangsan        
22:19:50 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x251562d5, L:/127.0.0.1:8080 - R:/127.0.0.1:52588] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 7a 68 61 6e 67 73 61 6e                         |zhangsan        |
+--------+-------------------------------------------------+----------------+
22:19:50 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x251562d5, L:/127.0.0.1:8080 - R:/127.0.0.1:52588] READ COMPLETE
22:19:50 [DEBUG] [defaultEventLoopGroup-2-1] c.i.o.EventLoopTest - zhangsan        
22:20:24 [DEBUG] [nioEventLoopGroup-4-2] i.n.h.l.LoggingHandler - [id: 0x94b2a840, L:/127.0.0.1:8080 - R:/127.0.0.1:52612] REGISTERED
22:20:24 [DEBUG] [nioEventLoopGroup-4-2] i.n.h.l.LoggingHandler - [id: 0x94b2a840, L:/127.0.0.1:8080 - R:/127.0.0.1:52612] ACTIVE
22:20:25 [DEBUG] [nioEventLoopGroup-4-2] i.n.h.l.LoggingHandler - [id: 0x94b2a840, L:/127.0.0.1:8080 - R:/127.0.0.1:52612] READ: 4B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6c 69 73 69                                     |lisi            |
+--------+-------------------------------------------------+----------------+
22:20:25 [DEBUG] [nioEventLoopGroup-4-2] i.n.h.l.LoggingHandler - [id: 0x94b2a840, L:/127.0.0.1:8080 - R:/127.0.0.1:52612] READ COMPLETE
22:20:25 [DEBUG] [defaultEventLoopGroup-2-2] c.i.o.EventLoopTest - lisi            
22:20:27 [DEBUG] [nioEventLoopGroup-4-2] i.n.h.l.LoggingHandler - [id: 0x94b2a840, L:/127.0.0.1:8080 - R:/127.0.0.1:52612] READ: 4B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6c 69 73 69                                     |lisi            |
+--------+-------------------------------------------------+----------------+
22:20:27 [DEBUG] [nioEventLoopGroup-4-2] i.n.h.l.LoggingHandler - [id: 0x94b2a840, L:/127.0.0.1:8080 - R:/127.0.0.1:52612] READ COMPLETE
22:20:27 [DEBUG] [defaultEventLoopGroup-2-2] c.i.o.EventLoopTest - lisi            
22:20:38 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x79a26af9, L:/127.0.0.1:8080 - R:/127.0.0.1:52625] REGISTERED
22:20:38 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x79a26af9, L:/127.0.0.1:8080 - R:/127.0.0.1:52625] ACTIVE
22:20:38 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x79a26af9, L:/127.0.0.1:8080 - R:/127.0.0.1:52625] READ: 6B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 77 61 6e 67 77 75                               |wangwu          |
+--------+-------------------------------------------------+----------------+
22:20:38 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x79a26af9, L:/127.0.0.1:8080 - R:/127.0.0.1:52625] READ COMPLETE
22:20:38 [DEBUG] [defaultEventLoopGroup-2-1] c.i.o.EventLoopTest - wangwu          
22:20:40 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x79a26af9, L:/127.0.0.1:8080 - R:/127.0.0.1:52625] READ: 6B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 77 61 6e 67 77 75                               |wangwu          |
+--------+-------------------------------------------------+----------------+
22:20:40 [DEBUG] [nioEventLoopGroup-4-1] i.n.h.l.LoggingHandler - [id: 0x79a26af9, L:/127.0.0.1:8080 - R:/127.0.0.1:52625] READ COMPLETE
22:20:40 [DEBUG] [defaultEventLoopGroup-2-1] c.i.o.EventLoopTest - wangwu          

可以看到,nio 工人和 非 nio 工人也分别绑定了 channel(LoggingHandler 由 nio 工人执行,而我们自己的 handler 由非 nio 工人执行)

计算机笔记--【Netty网络编程②】_第12张图片

handler 执行中如何换人?

关键代码 io.netty.channel.AbstractChannelHandlerContext#invokeChannelRead()

static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
    final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
    // 下一个 handler 的事件循环是否与当前的事件循环是同一个线程
    // 接口双继承 EventExecutor 和线程池
    EventExecutor executor = next.executor();  // 返回下一个Handler的EventLoop
    
    // 是,直接调用
    if (executor.inEventLoop()) {  // 判断当前 handler 的线程是否和下一个EventLoop是同一个线程
    	// 同一个线程中,方法直接调用,递归
        next.invokeChannelRead(m);  // invokeChannelRead 就是沿着调用链一个接一个往下掉
    } 
    // 不是,将要执行的代码作为任务提交给下一个事件循环处理(换人,换线程)
    else {
    	// 接下来的调用不能在当前线程调用,要换成下一个线程 executor 执行任务 Runnable
        executor.execute(new Runnable() {
            @Override
            public void run() {
                next.invokeChannelRead(m);
            }
        });
    }
}
  • 如果两个 handler 绑定的是同一个线程,那么就直接调用
  • 否则,把要调用的代码封装为一个任务对象,由下一个 handler 的线程来调用

如果处于绑定的是一个线程池,那么直接通过当前线程调用这个handler,如果前后两个handler绑定的不是一个线程池,则让后面那个handler绑定的线程池去执行后面这个handler

演示 NioEventLoop 处理普通任务

NioEventLoop 除了可以处理 io 事件,同样可以向它提交普通任务

NioEventLoopGroup nioWorkers = new NioEventLoopGroup(2);

log.debug("server start...");
Thread.sleep(2000);
nioWorkers.execute(()->{
    log.debug("normal task...");
});

输出

22:30:36 [DEBUG] [main] c.i.o.EventLoopTest2 - server start...
22:30:38 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - normal task...

可以用来执行耗时较长的任务

演示 NioEventLoop 处理定时任务
NioEventLoopGroup nioWorkers = new NioEventLoopGroup(2);

log.debug("server start...");
Thread.sleep(2000);
nioWorkers.scheduleAtFixedRate(() -> {
    log.debug("running...");
}, 0, 1, TimeUnit.SECONDS);

输出

22:35:15 [DEBUG] [main] c.i.o.EventLoopTest2 - server start...
22:35:17 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
22:35:18 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
22:35:19 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
22:35:20 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
...

可以用来执行定时任务

3.2 Channel

channel 的主要作用

  • close() 可以用来关闭 channel
  • closeFuture() 用来处理 channel 的关闭,要处理善后工作
    • sync 方法作用是同步等待 channel 关闭
    • 而 addListener 方法是异步等待 channel 关闭
  • pipeline() 方法添加处理器
  • write() 方法将数据写入channel,并不会立马发出
  • writeAndFlush() 方法将数据写入并刷出
ChannelFuture

这时刚才的客户端代码

new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    // 1、连接到服务器
    .connect("127.0.0.1", 8080)
    .sync()
    .channel()
    // 2、向服务器发送数据
    .writeAndFlush(new Date() + ": hello world!");

现在把它拆开来看

ChannelFuture channelFuture = new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    // 1、连接到服务器
    // 异步非阻塞,main 发起了调用,真正 connect 是 NIO 线程,建立连接比较慢
    .connect("127.0.0.1", 8080); // 1

channelFuture.sync().channel().writeAndFlush(new Date() + ": hello world!");
  • 1 处返回的是 ChannelFuture 对象,它的作用是利用 channel() 方法来获取 Channel 对象

注意 connect 方法是异步的非阻塞方法(线程执行这个方法,不关心结果,将这个命令指派给另一个线程,真正做连接操作的是另外一个线程),意味着不等连接建立,方法执行就返回了。无阻塞的向下执行,因此 channelFuture 对象中不能【立刻】获得到正确的 Channel 对象,连接都没有建立好,哪里来的 channel。

实验如下:

ChannelFuture channelFuture = new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080);

System.out.println(channelFuture.channel()); // 1
channelFuture.sync(); // 2
System.out.println(channelFuture.channel()); // 3
  • 执行到 1 时,连接未建立,打印 [id: 0x2e1884dd]
  • 执行到 2 时,sync 方法是同步等待连接建立完成
  • 执行到 3 时,连接肯定建立了,打印 [id: 0x2e1884dd, L:/127.0.0.1:57191 - R:/127.0.0.1:8080]

除了用 sync 方法可以让异步操作同步以外,还可以使用回调的方式:

ChannelFuture channelFuture = new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080);
System.out.println(channelFuture.channel()); // 1
channelFuture.addListener((ChannelFutureListener) future -> {
    System.out.println(future.channel()); // 2
});
  • 执行到 1 时,连接未建立,打印 [id: 0x749124ba]
  • ChannelFutureListener 会在连接建立时被调用(其中 operationComplete 方法),因此执行到 2 时,连接肯定建立了,打印 [id: 0x749124ba, L:/127.0.0.1:57351 - R:/127.0.0.1:8080]

客户端完整代码:

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringEncoder;
import lombok.extern.slf4j.Slf4j;

import java.net.InetSocketAddress;

@Slf4j
public class EventLoopClient {
    public static void main(String[] args) throws InterruptedException {
        // 2. 带有 Future,Promise 的类型都是和异步方法配套使用,用来处理结果
        ChannelFuture channelFuture = new Bootstrap()
                .group(new NioEventLoopGroup())
                .channel(NioSocketChannel.class)
                .handler(new ChannelInitializer<NioSocketChannel>() {
                    @Override // 在连接建立后被调用
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        ch.pipeline().addLast(new StringEncoder());
                    }
                })
                // 1. 连接到服务器
                // 异步非阻塞, main 发起了调用,真正执行 connect 是 nio 线程
                .connect(new InetSocketAddress("localhost", 8080)); // 1s 秒后

        // 2.1 使用 sync 方法同步处理结果
        /*channelFuture.sync(); // 阻塞住当前线程(发起调用的线程等待,也就是主线程等待),直到nio线程连接建立完毕
        Channel channel = channelFuture.channel();
        log.debug("{}", channel);
        channel.writeAndFlush("hello, world");*/

        // 2.2 使用 addListener(回调对象, ChannelFutureListener) 方法异步处理结果
        // (等待连接建立,以及最后建立成功,处理结果的活全都交给另外的线程做,只是告诉之后结果完了,调用一个回调函数,执行操作)
        channelFuture.addListener(new ChannelFutureListener() {
            @Override
            // 在 nio 线程连接建立好之后,会调用 operationComplete 方法
            public void operationComplete(ChannelFuture future) throws Exception {
                // 此时的 channel 是完整的
                Channel channel = future.channel();
                log.debug("{}", channel);
                // 发送数据
                channel.writeAndFlush("hello, world");
            }
        });
    }
}

计算机笔记--【Netty网络编程②】_第13张图片

CloseFuture

需求:由客户端的控制台不断地接收用户的输入,然后把用户输入的信息源源不断地发给服务器端,当不想发送信息了,发送一个 Q 表示退出,优雅关闭(channel真正的关闭后,再处理善后)。难点在于 channel.close(); 是异步操作方法。

@Slf4j
public class CloseFutureClient {
    public static void main(String[] args) throws InterruptedException {
        NioEventLoopGroup group = new NioEventLoopGroup();
        ChannelFuture channelFuture = new Bootstrap()
                .group(group)
                .channel(NioSocketChannel.class)
                .handler(new ChannelInitializer<NioSocketChannel>() {
                    @Override // 在连接建立后被调用
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                    	// 日志打印处理器,调试非常方便,LogLevel.DEBUG 为日志级别
                        ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                        ch.pipeline().addLast(new StringEncoder());
                    }
                })
                .connect(new InetSocketAddress("localhost", 8080));
        Channel channel = channelFuture.sync().channel();
        log.debug("{}", channel);
        new Thread(()->{
            Scanner scanner = new Scanner(System.in);
            while (true) {
                String line = scanner.nextLine();
                if ("q".equals(line)) {
                    channel.close(); // close 也是异步操作,可能 1s 之后才关闭
//                    log.debug("处理关闭之后的操作"); // 不能在这里善后  见下面图片中的结果,可查看 close() 和 debug 分别在哪个线程里运行
                    break;
                }
                channel.writeAndFlush(line);
            }
        }, "input").start();
//       log.debug("处理关闭之后的操作"); // 不能在这里善后
        // 获取 CloseFuture 对象, 1) 同步处理关闭, 2) 异步处理关闭
        ChannelFuture closeFuture = channel.closeFuture();
        /*log.debug("waiting close...");
        closeFuture.sync(); // 让当前线程阻塞,同步处理关闭
        log.debug("处理关闭之后的操作");*/
        closeFuture.addListener(new ChannelFutureListener() {
            @Override
            // 谁去关闭channel就会调用operationComplete
            public void operationComplete(ChannelFuture future) throws Exception {
                log.debug("处理关闭之后的操作");
                // 让 NioEventLoopGroup 优雅的停下来
                group.shutdownGracefully();
            }
        });
    }
}

ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG)); 需要配日志,如下图:

演示:

两个线程先后不能保证,所以就不能完全保证善后处理一定在 close() 后面。


异步提升的是什么
  • 有些同学看到这里会有疑问:为什么不在一个线程中去执行建立连接、去执行关闭 channel,那样不是也可以吗?非要用这么复杂的异步方式:比如一个线程发起建立连接,另一个线程去真正建立连接

  • 还有同学会笼统地回答,因为 netty 异步方式用了多线程、多线程就效率高。其实这些认识都比较片面,多线程和异步所提升的效率并不是所认为的

异步真正能提升的是IO密集型的server的吞吐量

思考下面的场景,4 个医生给人看病,每个病人花费 20 分钟,而且医生看病的过程中是以病人为单位的,一个病人看完了,才能看下一个病人。假设病人源源不断地来,可以计算一下 4 个医生一天工作 8 小时,处理的病人总数是:4 * 8 * 3 = 96

计算机笔记--【Netty网络编程②】_第14张图片

经研究发现,看病可以细分为四个步骤,经拆分后每个步骤需要 5 分钟,如下

计算机笔记--【Netty网络编程②】_第15张图片
因此可以做如下优化,只有一开始,医生 2、3、4 分别要等待 5、10、15 分钟才能执行工作,但只要后续病人源源不断地来,他们就能够满负荷工作,并且处理病人的能力提高到了 4 * 8 * 12 效率几乎是原来的四倍

计算机笔记--【Netty网络编程②】_第16张图片

要点

  • 单线程没法异步提高效率,必须配合多线程、多核 cpu 才能发挥异步的优势
  • 异步并没有缩短响应时间,反而有所增加(提升的是吞吐量,也就是单位时间内能够处理请求的速度)
  • 合理进行任务拆分,也是利用异步的关键

3.3 Future & Promise

在异步处理时,经常用到这两个接口
计算机笔记--【Netty网络编程②】_第17张图片
首先要说明 netty 中的 Future 与 jdk 中的 Future 同名,但是是两个接口,netty 的 Future 继承自 jdk 的 Future,而 Promise 又对 netty Future 进行了扩展

  • jdk Future 只能同步等待任务结束(或成功、或失败)才能得到结果
  • netty Future 可以同步等待任务结束得到结果,也可以异步方式得到结果,但都是要等任务结束
  • netty Promise 不仅有 netty Future 的功能,而且脱离了任务独立存在,只作为两个线程间传递结果的容器(下面的方法比较重要,了解一下,也记不住
功能/名称 jdk Future netty Future Promise
cancel 取消任务 - -
isCanceled 任务是否取消 - -
isDone 任务是否完成,不能区分成功失败 - -
get 获取任务结果,阻塞等待 - -
getNow - 获取任务结果,非阻塞,还未产生结果时返回 null -
await - 等待任务结束,如果任务失败,await 不会抛异常,而是通过 isSuccess 判断 -
sync - 同步阻塞,不获取任务结果,等待任务结束,如果任务失败,抛出异常 -
isSuccess - 判断任务是否成功 -
cause - 获取失败信息(获取异常信息),非阻塞,如果没有失败,返回null -
addLinstener - 添加回调,异步接收结果 -
setSuccess - - 设置成功结果
setFailure - - 设置失败结果

测试JDK中的Future

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.*;

@Slf4j
public class TestJdkFuture {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // 1. 线程池(JDK中的 Future 通常是配合线程池一起使用的)
        ExecutorService service = Executors.newFixedThreadPool(2);
        // 2. 提交任务
        Future<Integer> future = service.submit(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                log.debug("执行计算");
                Thread.sleep(1000);
                return 50;
            }
        });
        // 3. 主线程通过 future 来获取结果
        log.debug("等待结果");
        log.debug("结果是 {}", future.get());
    }
}

结果:
计算机笔记--【Netty网络编程②】_第18张图片

测试TestNettyFuture:

import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.EventLoop;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.util.concurrent.Future;
import io.netty.util.concurrent.GenericFutureListener;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;

@Slf4j
public class TestNettyFuture {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // netty 中的线程池 NioEventLoop 就有一个线程,是一个单线程的线程池
        NioEventLoopGroup group = new NioEventLoopGroup();
        EventLoop eventLoop = group.next();
        Future<Integer> future = eventLoop.submit(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                log.debug("执行计算");
                Thread.sleep(1000);
                return 70;
            }
        });
        log.debug("等待结果");
        log.debug("结果是 {}", future.get());  // 同步获取结果
        /*future.addListener(new GenericFutureListener>(){
            @Override
            public void operationComplete(Future future) throws Exception {
                log.debug("接收结果:{}", future.getNow());
            }
        });*/
    }
}

结果
计算机笔记--【Netty网络编程②】_第19张图片

import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.EventLoop;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.util.concurrent.Future;
import io.netty.util.concurrent.GenericFutureListener;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;

@Slf4j
public class TestNettyFuture {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // netty 中的线程池 NioEventLoop 就有一个线程,是一个单线程的线程池
        NioEventLoopGroup group = new NioEventLoopGroup();
        EventLoop eventLoop = group.next();
        Future<Integer> future = eventLoop.submit(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                log.debug("执行计算");
                Thread.sleep(1000);
                return 70;
            }
        });
//        log.debug("等待结果");
//        log.debug("结果是 {}", future.get());  // 同步获取结果
        future.addListener(new GenericFutureListener<Future<? super Integer>>(){  // 异步获取结果
            @Override
            public void operationComplete(Future<? super Integer> future) throws Exception {
                log.debug("接收结果:{}", future.getNow());  // getNow 表示立即获取结果,此刻回调方法都已经执行了,肯定有结果
            }
        });
    }
}

结果:
计算机笔记--【Netty网络编程②】_第20张图片

测试TestNettyPromise:(Promise作为多个线程之间通信的容器,可以解决回调地狱问题

import io.netty.channel.EventLoop;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.util.concurrent.DefaultPromise;
import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.ExecutionException;

@Slf4j
public class TestNettyPromise {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // 1. 准备 EventLoop 对象
        EventLoop eventLoop = new NioEventLoopGroup().next();
        // 2. 可以主动创建 promise, 结果容器, 默认实现 DefaultPromise
        DefaultPromise<Integer> promise = new DefaultPromise<>(eventLoop);
        new Thread(() -> {
            // 3. 任意一个线程执行计算,计算完毕后向 promise 填充结果
            log.debug("开始计算...");
            try {
//                int i = 1 / 0;
                Thread.sleep(1000);
                promise.setSuccess(80);
            } catch (Exception e) {
                e.printStackTrace();
                promise.setFailure(e); // 容器内填充异常
            }

        }).start();
        // 4. 接收结果的线程
        log.debug("等待结果...");
        log.debug("结果是: {}", promise.get());
    }
}

结果:
计算机笔记--【Netty网络编程②】_第21张图片
打开代码 int i = 1 / 0;
计算机笔记--【Netty网络编程②】_第22张图片

例1

同步处理任务成功

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.execute(()->{
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    log.debug("set success, {}",10);
    promise.setSuccess(10);
});

log.debug("start...");
log.debug("{}",promise.getNow()); // 还没有结果
log.debug("{}",promise.get());

输出

11:51:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
11:51:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - null
11:51:54 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set success, 10
11:51:54 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - 10
例2

异步处理任务成功

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

// 设置回调,异步接收结果
promise.addListener(future -> {
    // 这里的 future 就是上面的 promise
    log.debug("{}",future.getNow());
});

// 等待 1000 后设置成功结果
eventExecutors.execute(()->{
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    log.debug("set success, {}",10);
    promise.setSuccess(10);
});

log.debug("start...");

输出

11:49:30 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
11:49:31 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set success, 10
11:49:31 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - 10
例3

同步处理任务失败 - sync & get

DefaultEventLoop eventExecutors = new DefaultEventLoop();
        DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

        eventExecutors.execute(() -> {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            RuntimeException e = new RuntimeException("error...");
            log.debug("set failure, {}", e.toString());
            promise.setFailure(e);
        });

        log.debug("start...");
        log.debug("{}", promise.getNow());
        promise.get(); // sync() 也会出现异常,只是 get 会再用 ExecutionException 包一层异常

输出

12:11:07 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:11:07 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - null
12:11:08 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
Exception in thread "main" java.util.concurrent.ExecutionException: java.lang.RuntimeException: error...
	at io.netty.util.concurrent.AbstractFuture.get(AbstractFuture.java:41)
	at com.itcast.oio.DefaultPromiseTest2.main(DefaultPromiseTest2.java:34)
Caused by: java.lang.RuntimeException: error...
	at com.itcast.oio.DefaultPromiseTest2.lambda$main$0(DefaultPromiseTest2.java:27)
	at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
	at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
	at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
	at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
	at java.lang.Thread.run(Thread.java:745)
例4

同步处理任务失败 - await

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});

log.debug("start...");
log.debug("{}", promise.getNow());
promise.await(); // 与 sync 和 get 区别在于,不会抛异常
log.debug("result {}", (promise.isSuccess() ? promise.getNow() : promise.cause()).toString());

输出

12:18:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:18:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - null
12:18:54 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
12:18:54 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - result java.lang.RuntimeException: error...
例5

异步处理任务失败

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

promise.addListener(future -> {
    log.debug("result {}", (promise.isSuccess() ? promise.getNow() : promise.cause()).toString());
});

eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});

log.debug("start...");

输出

12:04:57 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:04:58 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
12:04:58 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - result java.lang.RuntimeException: error...
例6

await 死锁检查

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.submit(()->{
    System.out.println("1");
    try {
        promise.await();
        // 注意不能仅捕获 InterruptedException 异常
        // 否则 死锁检查抛出的 BlockingOperationException 会继续向上传播
        // 而提交的任务会被包装为 PromiseTask,它的 run 方法中会 catch 所有异常然后设置为 Promise 的失败结果而不会抛出
    } catch (Exception e) { 
        e.printStackTrace();
    }
    System.out.println("2");
});
eventExecutors.submit(()->{
    System.out.println("3");
    try {
        promise.await();
    } catch (Exception e) {
        e.printStackTrace();
    }
    System.out.println("4");
});

输出

1
2
3
4
io.netty.util.concurrent.BlockingOperationException: DefaultPromise@47499c2a(incomplete)
	at io.netty.util.concurrent.DefaultPromise.checkDeadLock(DefaultPromise.java:384)
	at io.netty.util.concurrent.DefaultPromise.await(DefaultPromise.java:212)
	at com.itcast.oio.DefaultPromiseTest.lambda$main$0(DefaultPromiseTest.java:27)
	at io.netty.util.concurrent.PromiseTask$RunnableAdapter.call(PromiseTask.java:38)
	at io.netty.util.concurrent.PromiseTask.run(PromiseTask.java:73)
	at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
	at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
	at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
	at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
	at java.lang.Thread.run(Thread.java:745)
io.netty.util.concurrent.BlockingOperationException: DefaultPromise@47499c2a(incomplete)
	at io.netty.util.concurrent.DefaultPromise.checkDeadLock(DefaultPromise.java:384)
	at io.netty.util.concurrent.DefaultPromise.await(DefaultPromise.java:212)
	at com.itcast.oio.DefaultPromiseTest.lambda$main$1(DefaultPromiseTest.java:36)
	at io.netty.util.concurrent.PromiseTask$RunnableAdapter.call(PromiseTask.java:38)
	at io.netty.util.concurrent.PromiseTask.run(PromiseTask.java:73)
	at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
	at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
	at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
	at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
	at java.lang.Thread.run(Thread.java:745)

3.4 Handler & Pipeline

ChannelHandler 用来处理 Channel 上的各种事件,分为入站、出站两种。所有 ChannelHandler 被连成一串,就是 Pipeline

  • 入站处理器通常是 ChannelInboundHandlerAdapter 的子类,主要用来读取客户端数据,写回结果
  • 出站处理器通常是 ChannelOutboundHandlerAdapter 的子类,主要对写回结果进行加工

打个比喻,每个 Channel 是一个产品的加工车间,Pipeline 是车间中的流水线,ChannelHandler 就是流水线上的各道工序,而后面要讲的 ByteBuf 是原材料,经过很多工序的加工:先经过一道道入站工序,再经过一道道出站工序最终变成产品

先搞清楚顺序,服务端

new ServerBootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(1);
                    ctx.fireChannelRead(msg); // 1
                }
            });
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(2);
                    ctx.fireChannelRead(msg); // 2
                }
            });
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(3);
                    ctx.channel().write(msg); // 3
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(4);
                    ctx.write(msg, promise); // 4
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(5);
                    ctx.write(msg, promise); // 5
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(6);
                    ctx.write(msg, promise); // 6
                }
            });
        }
    })
    .bind(8080);

客户端

new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080)
    .addListener((ChannelFutureListener) future -> {
        future.channel().writeAndFlush("hello,world");
    });

服务器端打印:

1
2
3
6
5
4

可以看到,ChannelInboundHandlerAdapter 是按照 addLast 的顺序执行的,而 ChannelOutboundHandlerAdapter 是按照 addLast 的逆序执行的。ChannelPipeline 的实现是一个 ChannelHandlerContext(包装了 ChannelHandler) 组成的双向链表

在这里插入图片描述

  • 入站处理器中,ctx.fireChannelRead(msg) 是 调用下一个入站处理器
    • 如果注释掉 1 处代码,则仅会打印 1
    • 如果注释掉 2 处代码,则仅会打印 1 2
  • 3 处的 ctx.channel().write(msg) 会 从尾部开始触发 后续出站处理器的执行
    • 如果注释掉 3 处代码,则仅会打印 1 2 3
  • 类似的,出站处理器中,ctx.write(msg, promise) 的调用也会 触发上一个出站处理器
    • 如果注释掉 6 处代码,则仅会打印 1 2 3 6
  • ctx.channel().write(msg) vs ctx.write(msg)
    • 都是触发出站处理器的执行
    • ctx.channel().write(msg) 从尾部开始查找出站处理器
    • ctx.write(msg) 是从当前节点找上一个出站处理器
    • 3 处的 ctx.channel().write(msg) 如果改为 ctx.write(msg) 仅会打印 1 2 3,因为节点3 之前没有其它出站处理器了
    • 6 处的 ctx.write(msg, promise) 如果改为 ctx.channel().write(msg) 会打印 1 2 3 6 6 6… 因为 ctx.channel().write() 是从尾部开始查找,结果又是节点6 自己

图1 - 服务端 pipeline 触发的原始流程,图中数字代表了处理步骤的先后次序

计算机笔记--【Netty网络编程②】_第23张图片

(演示入站)服务端完整代码:

import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;

import java.nio.charset.Charset;

@Slf4j
public class TestPipeline {
    public static void main(String[] args) {
        new ServerBootstrap()
                .group(new NioEventLoopGroup())
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        // 1. 通过 channel 拿到 pipeline
                        ChannelPipeline pipeline = ch.pipeline();
                        // 2. 往后添加处理器(是一个双向链表) head ->  h1 -> h2 ->  h4 -> h3 -> h5 -> h6 -> tail (head 和 tail 是由Netty帮忙创建的)
                        pipeline.addLast("h1", new ChannelInboundHandlerAdapter(){  // 添加入站处理器
                            @Override  // 第一个拿到的 msg 是最原始的 ByteBuf
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                log.debug("1");
                                // 将 ByteBuf 转换为字符串
                                String name = ((ByteBuf) msg).toString(Charset.defaultCharset());
                                super.channelRead(ctx, name);  // 调用 pipeline 中的下一个 handler 并向下传递解析好的数据
                            }
                        });
                        pipeline.addLast("h2", new ChannelInboundHandlerAdapter(){
                            @Override // Object name 是上一级传下来的,这次是字符串
                            public void channelRead(ChannelHandlerContext ctx, Object name) throws Exception {
                                log.debug("2");
                                Student student = new Student((String) name);
                                super.channelRead(ctx, student); // 将数据传递给下个 handler,如果不调用 channelRead,调用链会断开 或者调用内部实现 ctx.fireChannelRead(student); 
                            }
                        });

                        pipeline.addLast("h3", new ChannelInboundHandlerAdapter(){
                            @Override
                            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                                log.debug("3, 结果{}, class{}", msg, msg.getClass());
                                // 到这里已经没有了入站处理器,不用调函数 channelRead
                                // channelRead
                                ctx.writeAndFlush(ctx.alloc().buffer().writeBytes("server...".getBytes()));
                                // 向 channel 中写入数据才会触发出站处理器(入站是从head开始,出站是从tail开始)
                                ch.writeAndFlush(ctx.alloc().buffer().writeBytes("server...".getBytes()));
                            }
                        });
                        pipeline.addLast("h4", new ChannelOutboundHandlerAdapter(){  // 出站处理器
                            @Override
                            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                                log.debug("4");
                                super.write(ctx, msg, promise);
                            }
                        });
                        pipeline.addLast("h5", new ChannelOutboundHandlerAdapter(){
                            @Override
                            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                                log.debug("5");
                                super.write(ctx, msg, promise);
                            }
                        });
                        pipeline.addLast("h6", new ChannelOutboundHandlerAdapter(){
                            @Override
                            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                                log.debug("6");
                                super.write(ctx, msg, promise);
                            }
                        });
                    }
                })
                .bind(8080);
    }
    @Data
    @AllArgsConstructor
    static class Student {
        private String name;
    }
}

客户端完整代码:

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.string.StringEncoder;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import lombok.extern.slf4j.Slf4j;

import java.net.InetSocketAddress;
import java.util.Scanner;

@Slf4j
public class CloseFutureClient {
    public static void main(String[] args) throws InterruptedException {
        NioEventLoopGroup group = new NioEventLoopGroup();
        ChannelFuture channelFuture = new Bootstrap()
                .group(group)
                .channel(NioSocketChannel.class)
                .handler(new ChannelInitializer<NioSocketChannel>() {
                    @Override // 在连接建立后被调用
                    protected void initChannel(NioSocketChannel ch) throws Exception {
//                        ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                        ch.pipeline().addLast(new StringEncoder());
                    }
                })
                .connect(new InetSocketAddress("localhost", 8080));
        System.out.println(channelFuture.getClass());
        Channel channel = channelFuture.sync().channel();
        log.debug("{}", channel);
        new Thread(()->{
            Scanner scanner = new Scanner(System.in);
            while (true) {
                String line = scanner.nextLine();
                if ("q".equals(line)) {
                    channel.close(); // close 异步操作 1s 之后
//                    log.debug("处理关闭之后的操作"); // 不能在这里善后
                    break;
                }
                channel.writeAndFlush(line);
            }
        }, "input").start();

        // 获取 CloseFuture 对象, 1) 同步处理关闭, 2) 异步处理关闭
        ChannelFuture closeFuture = channel.closeFuture();
        /*log.debug("waiting close...");
        closeFuture.sync();
        log.debug("处理关闭之后的操作");*/
        System.out.println(closeFuture.getClass());
        closeFuture.addListener((ChannelFutureListener) future -> {
            log.debug("处理关闭之后的操作");
            group.shutdownGracefully();
        });
    }
}

结果:
计算机笔记--【Netty网络编程②】_第24张图片
计算机笔记--【Netty网络编程②】_第25张图片
演示 writeAndFlush
计算机笔记--【Netty网络编程②】_第26张图片
计算机笔记--【Netty网络编程②】_第27张图片

测试TestEmbeddedChannel(调试工具),是用来调试测试Handler,不用频繁的启动服务端和客户端:

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import io.netty.channel.ChannelOutboundHandlerAdapter;
import io.netty.channel.ChannelPromise;
import io.netty.channel.embedded.EmbeddedChannel;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;

import java.nio.charset.Charset;

@Slf4j
public class TestEmbeddedChannel {
    public static void main(String[] args) {
        ChannelInboundHandlerAdapter h1 = new ChannelInboundHandlerAdapter() {
            @Override
            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                log.debug("1");
                super.channelRead(ctx, msg);
            }
        };
        ChannelInboundHandlerAdapter h2 = new ChannelInboundHandlerAdapter() {
            @Override
            public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                log.debug("2");
                super.channelRead(ctx, msg);
            }
        };
        ChannelOutboundHandlerAdapter h3 = new ChannelOutboundHandlerAdapter() {
            @Override
            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                log.debug("3");
                super.write(ctx, msg, promise);
            }
        };
        ChannelOutboundHandlerAdapter h4 = new ChannelOutboundHandlerAdapter() {
            @Override
            public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
                log.debug("4");
                super.write(ctx, msg, promise);
            }
        };
        EmbeddedChannel channel = new EmbeddedChannel(h1, h2, h3, h4);
        // 模拟入站操作
        channel.writeInbound(ByteBufAllocator.DEFAULT.buffer().writeBytes("hello".getBytes()));
        // 模拟出站操作
        channel.writeOutbound(ByteBufAllocator.DEFAULT.buffer().writeBytes("world".getBytes()));

    }
}

结果:
计算机笔记--【Netty网络编程②】_第28张图片

3.5 ByteBuf

是对字节数据的封装(是对NIO中的ByteBuffer的增强

讲课逻辑和编写逻辑是一样的,group,channel、sync、Future、Promise、close,然后讲处理器业务pipline、in\outbound、

1)创建
ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(10);  // 支持动态扩容
log(buffer);

上面代码创建了一个默认的 ByteBuf(池化基于直接内存的 ByteBuf),初始容量是 10

输出

read index:0 write index:0 capacity:10

其中 log 方法参考如下

private static void log(ByteBuf buffer) {
    int length = buffer.readableBytes();
    int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;
    StringBuilder buf = new StringBuilder(rows * 80 * 2)
        .append("read index:").append(buffer.readerIndex())
        .append(" write index:").append(buffer.writerIndex())
        .append(" capacity:").append(buffer.capacity())
        .append(NEWLINE);
    appendPrettyHexDump(buf, buffer);
    System.out.println(buf.toString());
}

测试扩容:

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;

import static io.netty.buffer.ByteBufUtil.appendPrettyHexDump;
import static io.netty.util.internal.StringUtil.NEWLINE;

public class TestByteBuf {
    public static void main(String[] args) {

        ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();
        System.out.println(buf.getClass());
        System.out.println(buf.maxCapacity());
        System.out.println(buf);
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < 300; i++) {
            sb.append("a");
        }
        buf.writeBytes(sb.toString().getBytes());
        System.out.println(buf);
    }
}

结果:
计算机笔记--【Netty网络编程②】_第29张图片

新增调试工具:

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;

import static io.netty.buffer.ByteBufUtil.appendPrettyHexDump;
import static io.netty.util.internal.StringUtil.NEWLINE;

public class TestByteBuf {
    public static void main(String[] args) {

        ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();
        System.out.println(buf.getClass());
        System.out.println(buf.maxCapacity());
        log(buf);
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < 300; i++) {
            sb.append("a");
        }
        buf.writeBytes(sb.toString().getBytes());
        log(buf);
    }

    public static void log(ByteBuf buffer) {
        int length = buffer.readableBytes();
        int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;
        StringBuilder buf = new StringBuilder(rows * 80 * 2)
                .append("read index:").append(buffer.readerIndex())
                .append(" write index:").append(buffer.writerIndex())
                .append(" capacity:").append(buffer.capacity())
                .append(NEWLINE);
        appendPrettyHexDump(buf, buffer);
        System.out.println(buf.toString());
    }
}

结果:

class io.netty.buffer.PooledUnsafeDirectByteBuf
2147483647
read index:0 write index:0 capacity:256

read index:0 write index:32 capacity:256
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
|00000010| 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 |aaaaaaaaaaaaaaaa|
+--------+-------------------------------------------------+----------------+

Process finished with exit code 0
2)直接内存 vs 堆内存

可以使用下面的代码来创建池化基于堆的 ByteBuf

  • 堆内存的分配效率比较高,而读写效率比较低,GC,搬迁复制对象
  • 直接内存的分配效率比较低,而读写效率比较高,系统和Java访问的是同一块内存
ByteBuf buffer = ByteBufAllocator.DEFAULT.heapBuffer(10);

也可以使用下面的代码来创建池化基于直接内存的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.directBuffer(10);
  • 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放
3)池化 vs 非池化

Netty 中的ByteBuf支持一种池化管理,就是对创建比较慢的资源可以用池的观点优化(预先创建好,享元模式)
池化的最大意义在于可以重用 ByteBuf,优点有

  • 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
  • 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
  • 高并发时,池化功能更节约内存,减少内存溢出的可能

池化功能是否开启,可以通过下面的系统环境变量来设置(默认开启)或者作为VM的参数

-Dio.netty.allocator.type={unpooled|pooled}
  • 4.1 以后,非 Android 平台默认启用池化实现,Android 平台启用非池化实现
  • 4.1 之前,池化功能还不成熟,默认是非池化实现

ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();
计算机笔记--【Netty网络编程②】_第30张图片
ByteBuf buf = ByteBufAllocator.DEFAULT.heapBuffer();
计算机笔记--【Netty网络编程②】_第31张图片

4)组成

ByteBuf 由四部分组成
计算机笔记--【Netty网络编程②】_第32张图片
容量和最大容量,保证了按需索取的原则,可以进行动态扩容。
计算机笔记--【Netty网络编程②】_第33张图片
最开始读写指针都在 0 位置,双指针的好处就是,在读写时不用切换读写模式,比较方便,NIO中的ByteBuffer只有一个指针 position,需要频繁的切换读写模式。

5)写入

方法列表,省略一些不重要的方法

方法签名 含义 备注
writeBoolean(boolean value) 写入 boolean 值 用一字节 01|00 分别代表 true|false
writeByte(int value) 写入 byte 值
writeShort(int value) 写入 short 值
writeInt(int value) 写入 int 值 Big Endian(大端写入),即 0x250,写入后 00 00 02 50
writeIntLE(int value) 写入 int 值 Little Endian(小段写入),即 0x250,写入后 50 02 00 00
writeLong(long value) 写入 long 值
writeChar(int value) 写入 char 值
writeFloat(float value) 写入 float 值
writeDouble(double value) 写入 double 值
writeBytes(ByteBuf src) 写入 netty 的 ByteBuf
writeBytes(byte[] src) 写入 byte[]
writeBytes(ByteBuffer src) 写入 nio 的 ByteBuffer
int writeCharSequence(CharSequence sequence, Charset charset) 写入字符串

注意

  • 这些方法的未指明返回值的,其返回值都是 ByteBuf,意味着可以链式调用
  • 网络传输,默认习惯是 Big Endian

先写入 4 个字节

buffer.writeBytes(new byte[]{1, 2, 3, 4});
log(buffer);

结果是

read index:0 write index:4 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+

再写入一个 int 整数,也是 4 个字节

buffer.writeInt(5);
log(buffer);

结果是

read index:0 write index:8 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05                         |........        |
+--------+-------------------------------------------------+----------------+

还有一类方法是 set 开头的一系列方法,也可以写入数据,但不会改变写指针位置

6)扩容

再写入一个 int 整数时,容量不够了(初始容量是 10),这时会引发扩容

buffer.writeInt(6);
log(buffer);

扩容规则是(先等差再等比)

  • 如何写入后数据大小未超过 512,则选择下一个 16 的整数倍,例如写入后大小为 12 ,则扩容后 capacity 是 16
  • 如果写入后数据大小超过 512,则选择下一个 2^n,例如写入后大小为 513,则扩容后 capacity 是 210=1024(29=512 已经不够了)
  • 扩容不能超过 max capacity 会报错

结果是

read index:0 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05 00 00 00 06             |............    |
+--------+-------------------------------------------------+----------------+
7)读取

例如读了 4 次,每次一个字节

System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
log(buffer);

读过的内容,就属于废弃部分了,再读只能读那些尚未读取的部分,log 只打印剩余的部分,读过得给废弃掉。

1
2
3
4
read index:4 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

如果需要重复读取 int 整数 5,怎么办?

可以在 read 前先做个标记 mark

buffer.markReaderIndex();
System.out.println(buffer.readInt());
log(buffer);

结果

5
read index:8 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 06                                     |....            |
+--------+-------------------------------------------------+----------------+

这时要重复读取的话,重置到标记位置 reset

buffer.resetReaderIndex();
log(buffer);

这时

read index:4 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

还有种办法是采用 get 开头的一系列方法,这些方法不会改变 read index

8)retain & release

由于 Netty 中有堆外内存的 ByteBuf 实现,堆外内存最好是手动来释放,而不是等 GC 垃圾回收。

  • UnpooledHeapByteBuf 使用的是 JVM 内存,只需等 GC 回收内存即可。
  • UnpooledDirectByteBuf 使用的就是直接内存了,需要特殊的方法来回收内存(主动调用,而不是GC间接触发垃圾回收)。
  • PooledByteBuf 和它的子类使用了池化机制,需要更复杂的规则来回收内存(内存重用,将内存重新返回池中)。

回收内存的源码实现,请关注下面方法的不同实现

protected abstract void deallocate()

Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口(提供了通用的方法来回收内存,TODO查看ReferenceCounted的源码

  • 每个 ByteBuf 对象的初始计数为 1
  • 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
  • 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
  • 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用

谁来负责 release 呢?

不是我们想象的(一般情况下)

ByteBuf buf = ...
try {
    ...
} finally {
    buf.release();
}

请思考,因为 pipeline 的存在,一般需要将 ByteBuf 传递给下一个 ChannelHandler,如果在 finally 中 release 了,就失去了传递性(当然,如果在这个 ChannelHandler 内这个 ByteBuf 已完成了它的使命,那么便无须再传递)

基本规则是,谁是最后使用者,谁负责 release,如果一直穿到最后,就由head或者tail来release,详细分析如下

  • 起点,对于 NIO 实现来讲,在 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read 方法中首次创建 ByteBuf 放入 pipeline(line 163 pipeline.fireChannelRead(byteBuf)
  • 入站 ByteBuf 处理原则
    • 对原始 ByteBuf 不做处理,调用 ctx.fireChannelRead(msg) 向后传递,这时无须 release
    • 将原始 ByteBuf 转换为其它类型的 Java 对象,这时 ByteBuf 就没用了,必须 release
    • 如果不调用 ctx.fireChannelRead(msg) 向后传递,那么也必须 release
    • 注意各种异常,如果 ByteBuf 没有成功传递到下一个 ChannelHandler,必须 release
    • 假设消息一直向后传,那么 TailContext 会负责释放未处理消息(原始的 ByteBuf)
  • 出站 ByteBuf 处理原则
    • 出站消息最终都会转为 ByteBuf 输出,一直向前传,由 HeadContext flush 后 release
  • 异常处理原则
    • 有时候不清楚 ByteBuf 被引用了多少次,但又必须彻底释放,可以循环调用 release 直到返回 true

TODO查看 DefaultChannelPipeline 源码 TailContext 中的 channelRead 方法可以看到 release 的最终释放,HeadContext 中的 channelWrite 方法可以看到 release 的最终释放
TailContext 释放未处理消息逻辑

// io.netty.channel.DefaultChannelPipeline#onUnhandledInboundMessage(java.lang.Object)
protected void onUnhandledInboundMessage(Object msg) {
    try {
        logger.debug(
            "Discarded inbound message {} that reached at the tail of the pipeline. " +
            "Please check your pipeline configuration.", msg);
    } finally {
        ReferenceCountUtil.release(msg);
    }
}

具体代码

// io.netty.util.ReferenceCountUtil#release(java.lang.Object)
public static boolean release(Object msg) {
    if (msg instanceof ReferenceCounted) {
        return ((ReferenceCounted) msg).release();
    }
    return false;
}
9)slice

前面讲的零拷贝指的是由文件 Channel 向 ScoketChannel 传输数据的时候,可以不经过Java内存直接从文件走到Scoket网络设备,从此减少了数据的复制

【零拷贝】的体现之一,对原始 ByteBuf 进行切片成多个 ByteBuf,切片后的 ByteBuf 并没有发生内存复制,还是使用原始 ByteBuf 的内存,切片后的 ByteBuf 维护独立的 read,write 指针

计算机笔记--【Netty网络编程②】_第34张图片
完整代码演示:

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;

import static cn.itcast.netty.c4.TestByteBuf.log;

public class TestSlice {
    public static void main(String[] args) {
        ByteBuf buf = ByteBufAllocator.DEFAULT.buffer(10);
        buf.writeBytes(new byte[]{'a','b','c','d','e','f','g','h','i','j'});
        log(buf);

        // 在切片过程中,没有发生数据复制
        ByteBuf f1 = buf.slice(0, 5);
        f1.retain(); // 让引用计数加一
        // 'a','b','c','d','e', 'x'
        ByteBuf f2 = buf.slice(5, 5);
        f2.retain(); // 让引用计数加一
        log(f1);
        log(f2);

        // 向切片中再写入数据
//        f1.writeByte('x');  // 报错 java.lang.IndexOutOfBoundsException

        // 修改 f1 中的值
        System.out.println("=============");
        f1.setByte(0, 'b');
        log(f1);
        log(buf);

        System.out.println("释放原有 byteBuf 内存");
        buf.release(); // 让 buf 的引用计数减一,并没有释放掉f1和f2内存
        log(f1);  // 同一块内存,导致无法使用,加了 f1.retain(); 使得引用计数没有减到 0 还可以使用


        f1.release();
        f2.release();
    }
}

结果:

read index:0 write index:10 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65 66 67 68 69 6a                   |abcdefghij      |
+--------+-------------------------------------------------+----------------+
read index:0 write index:5 capacity:5
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 65                                  |abcde           |
+--------+-------------------------------------------------+----------------+
read index:0 write index:5 capacity:5
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 67 68 69 6a                                  |fghij           |
+--------+-------------------------------------------------+----------------+
=============
read index:0 write index:5 capacity:5
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 63 64 65                                  |bbcde           |
+--------+-------------------------------------------------+----------------+
read index:0 write index:10 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 63 64 65 66 67 68 69 6a                   |bbcdefghij      |
+--------+-------------------------------------------------+----------------+
释放原有 byteBuf 内存
read index:0 write index:5 capacity:5
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 63 64 65                                  |bbcde           |
+--------+-------------------------------------------------+----------------+

Process finished with exit code 0

例,原始 ByteBuf 进行一些初始操作

ByteBuf origin = ByteBufAllocator.DEFAULT.buffer(10);
origin.writeBytes(new byte[]{1, 2, 3, 4});
origin.readByte();
System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

这时调用 slice 进行切片,无参 slice 是从原始 ByteBuf 的 read index 到 write index 之间的内容进行切片,切片后的 max capacity 被固定为这个区间的大小,因此不能追加 write

ByteBuf slice = origin.slice();
System.out.println(ByteBufUtil.prettyHexDump(slice));
// slice.writeByte(5); 如果执行,会报 IndexOutOfBoundsException 异常

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

如果原始 ByteBuf 再次读操作(又读了一个字节)

origin.readByte();
System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 04                                           |..              |
+--------+-------------------------------------------------+----------------+

这时的 slice 不受影响,因为它有独立的读写指针

System.out.println(ByteBufUtil.prettyHexDump(slice));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

如果 slice 的内容发生了更改

slice.setByte(2, 5);
System.out.println(ByteBufUtil.prettyHexDump(slice));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 05                                        |...             |
+--------+-------------------------------------------------+----------------+

这时,原始 ByteBuf 也会受影响,因为底层都是同一块内存

System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 05                                           |..              |
+--------+-------------------------------------------------+----------------+
10)duplicate

【零拷贝】的体现之一,就好比截取了原始 ByteBuf 所有内容,并且没有 max capacity 的限制,也是与原始 ByteBuf 使用同一块底层内存,只是读写指针是独立的

计算机笔记--【Netty网络编程②】_第35张图片

11)copy

会将底层内存数据进行深拷贝,因此无论读写,都与原始 ByteBuf 无关

12)CompositeByteBuf

【零拷贝】的体现之一,可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝

有两个 ByteBuf 如下

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});
System.out.println(ByteBufUtil.prettyHexDump(buf1));
System.out.println(ByteBufUtil.prettyHexDump(buf2));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05                                  |.....           |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 06 07 08 09 0a                                  |.....           |
+--------+-------------------------------------------------+----------------+

现在需要一个新的 ByteBuf,内容来自于刚才的 buf1 和 buf2,如何实现?

方法1:

ByteBuf buf3 = ByteBufAllocator.DEFAULT
    .buffer(buf1.readableBytes()+buf2.readableBytes());
buf3.writeBytes(buf1); // writeBytes 会发生数据的复制
buf3.writeBytes(buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

结果

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

这种方法好不好?回答是不太好,因为进行了数据的内存复制操作

方法2:

CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();
// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0
buf3.addComponents(true, buf1, buf2);

结果是一样的(逻辑上合并

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。

  • 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制
  • 缺点,复杂了很多,多次操作会带来性能的损耗
13)Unpooled

Unpooled 是一个工具类,类如其名,提供了非池化的 ByteBuf 创建、组合、复制等操作

这里仅介绍其跟【零拷贝】相关的 wrappedBuffer 方法,可以用来包装 ByteBuf

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});

// 当包装 ByteBuf 个数超过一个时, 底层使用了 CompositeByteBuf
ByteBuf buf3 = Unpooled.wrappedBuffer(buf1, buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

也可以用来包装普通字节数组,底层也不会有拷贝操作

ByteBuf buf4 = Unpooled.wrappedBuffer(new byte[]{1, 2, 3}, new byte[]{4, 5, 6});
System.out.println(buf4.getClass());
System.out.println(ByteBufUtil.prettyHexDump(buf4));

输出

class io.netty.buffer.CompositeByteBuf
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06                               |......          |
+--------+-------------------------------------------------+----------------+
ByteBuf 优势
  • 池化 - 可以重用池中 ByteBuf 实例,更节约内存,减少内存溢出的可能
  • 读写指针分离,不需要像 ByteBuffer 一样切换读写模式
  • 可以自动扩容
  • 支持链式调用,使用更流畅
  • 很多地方体现零拷贝,例如 slice、duplicate、CompositeByteBuf

4. 双向通信

4.1 练习

实现一个 echo server

编写 server

new ServerBootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf buffer = (ByteBuf) msg;
                    System.out.println(buffer.toString(Charset.defaultCharset()));

                    // 建议使用 ctx.alloc() 创建 ByteBuf
                    ByteBuf response = ctx.alloc().buffer();
                    response.writeBytes(buffer);
                    ctx.writeAndFlush(response);

                    // 思考:需要释放 buffer 吗
                    // 思考:需要释放 response 吗
                }
            });
        }
    }).bind(8080);

编写 client

NioEventLoopGroup group = new NioEventLoopGroup();
Channel channel = new Bootstrap()
    .group(group)
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) throws Exception {
            ch.pipeline().addLast(new StringEncoder());
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf buffer = (ByteBuf) msg;
                    System.out.println(buffer.toString(Charset.defaultCharset()));

                    // 思考:需要释放 buffer 吗
                }
            });
        }
    }).connect("127.0.0.1", 8080).sync().channel();

channel.closeFuture().addListener(future -> {
    group.shutdownGracefully();
});

new Thread(() -> {
    Scanner scanner = new Scanner(System.in);
    while (true) {
        String line = scanner.nextLine();
        if ("q".equals(line)) {
            channel.close();
            break;
        }
        channel.writeAndFlush(line);
    }
}).start();

读和写的误解

我最初在认识上有这样的误区,认为只有在 netty,nio 这样的多路复用 IO 模型时,读写才不会相互阻塞,才可以实现高效的双向通信,但实际上,Java Socket 是全双工的:在任意时刻,线路上存在A 到 BB 到 A 的双向信号传输。即使是阻塞 IO,读和写是可以同时进行的,只要分别采用读线程和写线程即可,读不会阻塞写、写也不会阻塞读

例如

public class TestServer {
    public static void main(String[] args) throws IOException {
        ServerSocket ss = new ServerSocket(8888);
        Socket s = ss.accept();

        new Thread(() -> {
            try {
                BufferedReader reader = new BufferedReader(new InputStreamReader(s.getInputStream()));
                while (true) {
                    System.out.println(reader.readLine());
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
                // 例如在这个位置加入 thread 级别断点,可以发现即使不写入数据,也不妨碍前面线程读取客户端数据
                for (int i = 0; i < 100; i++) {
                    writer.write(String.valueOf(i));
                    writer.newLine();
                    writer.flush();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

客户端

public class TestClient {
    public static void main(String[] args) throws IOException {
        Socket s = new Socket("localhost", 8888);

        new Thread(() -> {
            try {
                BufferedReader reader = new BufferedReader(new InputStreamReader(s.getInputStream()));
                while (true) {
                    System.out.println(reader.readLine());
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
                for (int i = 0; i < 100; i++) {
                    writer.write(String.valueOf(i));
                    writer.newLine();
                    writer.flush();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

你可能感兴趣的:(网络,java,分布式)