Transformer 架构

Transformer 是一种深度学习架构,它是一种编码器 - 解码器架构,用于自然语言处理任务,如机器翻译和语言模型。它的优势在于,它能够处理变长序列数据,并且不需要使用循环神经网络,这使得它在计算上比较高效。

Transformer 由一个编码器和一个解码器组成。编码器用于将输入序列编码为内部表示,解码器则用于将内部表示解码为输出序列。两者之间使用注意力机制进行交互,以便解码器可以在生成输出序列的同时参考输入序列。

Transformer 使用多头注意力机制来计算注意力权重,这使得它能够同时参考多个位置的信息。这是通过在输入序列上进行多次注意力计算来实现的,每次计算都使用不同的权重矩阵

你可能感兴趣的:(transformer,深度学习,人工智能,机器学习,自然语言处理)