数据结构

一、线性表

A.顺序表

数据结构设计
typedef struct
{
 DATATYPE buf[MAX];
 int n;
}SEQLIST;

1.插入元素(seq)
 seq->buf[seq->n] = data;

2.按位置插入(seq,post,data)
 mov_n = seq->n + 1 - post + 1

 for(i = seq->n; mov_n > 0; i --,mov_n --)
{
 seq->buf[i+1] = seq->buf[i]
}

seq->buf[post-1] = data;

3.删除一个指定的元素(seq,key)

 for(i = 0,j = 0;i <= seq->n ;i ++)
{
 if(seq->buf[i]  != key)
  seq->buf[j++] = seq->buf[i];
}

seq->n = j - 1;

B.链表

数据结构的设计
typedef struct node
{
 DATATYPE data;
 struct node *next;
}LINKLIST;

1.创建

a.分配头结点(head)
 b.head->next = NULL;
 c.return head;

 2.头插法
 struct node *temp;

 temp = (struct node *)malloc(sizeof(struct node));
 temp->data = data;

 temp->next = head->next;
 head->next = temp;

 3.尾插法
 思想:遍历到链表的尾部
 struct node *p = head;

 while(p->next != NULL) p = p->next;
 p->next = temp;
 temp->next = NULL;

 //1 4 6 7
 4.按序插入
 struct node *p = head;

 while(p->next != NULL && p->next->data < data) p = p->next;
 temp->next = p->next;
 p->next = temp;

 //1 2 4 8 9
 5.删除一个指定的元素
 struct node *p = head;

 while(p->next != NULL && p->next->data != data) p = p->next;

 temp = p->next;
 p->next = temp->next;
 free(temp);

 6.逆置一个链表
 struct node *p = head;
 struct node *q = p ->next;
 struct node *current;

 current = q->next;
 q->next = NULL;

while(current)
{
 p = current->next;
 current->next = head->next;
 head->next = current;
 current = p;
}

7.链表的遍历
struct node * p = head->next;

while(p)
{
 printf("%d ",p->data);
 p = p->next;
}


C.顺序栈
数据结构设计
typedef struct
{
 DATATYPE buf[MAX];
 int top;//记录栈顶元素的位置
}STACK;

1.create_empty_stack()
{
 STACK *s;

 s = malloc();
 s->top = -1;
}

2.push_stack(STACK *s,DATATYPE data)
{
 a.判满
  b.s->top ++;
 s->buf[s->top] = data;
}

3.DATATYPE pop_stack(STACK *)
{
 a.判空

  data = s->buf[s->top];
 s->top --;

 b.return data;
}

D.链式栈
数据结构设计

struct node
{
 DATATYPE data;
 struct node *next;
};

typedef struct
{
 struct node *top;
 int n;
}STACK;

1.create_empty_stack()

 STACK *s = (STACK *)malloc(sizeof(STACK));
 s->top = NULL;
 s->n = 0;

2.push_stack(STACK *s,DATATYPE data)
{
 struct node *temp;

 temp = malloc();
 temp->data = data;

 temp->next = s->top;
 s->top = temp;
 s->n ++;

 return 0;
}

判空

is_empty_stack
{
 //return s->top == NULL ? 1 : 0;
 return s->n == 0 ? 1 : 0;

}


3.DATAYPE pop_stack(STACK *s)
{
 struct node *temp;
 DATATYPE data;

 temp = s->top;
 data = temp->data;

 s->top = temp->next;
 free(temp);

 s->n --;

 return data;
}

E.队列

循环队列数据结构设计

typedef struct
{
 DATATYPE buf[MAX];
 int front;
 int rear;
}QUEUE;

规定
队空:q->front == q->rear;

队满:(q->rear + 1) % MAX == q->front;

1.create_queue
q = malloc();
q->front = q->rear = 0;

2.入队
a.判满
q->buf[q->rear] = data;
b.
q->rear = (q->rear + 1) % MAX;

3.出队
a.判空

b.
data = q->buf[q->front];
q->front = (q->front + 1) % MAX;
return data;

链式队列

数据结构设计

struct node
{
 DATATYPE data;
 struct node *next;
}

typedef struct
{
 struct node *front;
 struct node *rear;
}QUEUE;

1.create_empty_queue()
 a.分配链表的头
 head = (struct node *)malloc(sizeof(struct node));
 head->next = NULL;

 b.分配队列的头
 q = (QUEUE *)malloc(sizeof(QUEUE));
 q->front = q->rear = head;

 return q;

2.EnterQueue()

 temp = (struct node *)malloc(sizeof(struct node));
 temp->data = data;

 q->rear->next = temp;
 q->rear = temp;
 temp->next = NULL;

3.DeleteQueue()
 a.判空

 b.struct node *temp;

 temp = q->front;
 q->front = temp->next;
 free(temp);

 return q->front->data;


 二、非线性表

A.树(二叉树)

 数据结构设计

 typedef struct TreeNode
{
 DATATYPE data;
 struct TreeNode *lchild;
 struct TreeNode *rchild;
}BITREE;

1.创建完全二叉树

BITREE *create_binary_tree(int n)
{
 BITREE *root;

 root = space_node(1);
 push_stack(s,root);

 while(!is_empty_stack(s))
 {
  tree = pop_stack(s);
  if(2 * tree->data <= n)
  {
   tree->lchild = space_node(2 * tree->data);
   push_stack(tree->lchild);
  }

  if(2 * tree->data + 1 <= n)
  {
   tree->rchild = space_node(2 * tree->data + 1);
   push_stack(tree->rchild);
  }
 }

 return root;
}

//n = 1
BITREE *_create_binary_tree(int n)
{
 BITREE *root;

 root = space_node(n);

 if(2 * root->data <= N)
  root->lchid = _create_bianry_tree(2 * root->data);

 if(2 * root->data + 1<= N)
  root->rchid = _create_bianry_tree(2 * root->data + 1);

 return root;
}

2.遍历二叉树

a.前序遍历

PreOrder(BITREE *tree)
{
 if(tree == NULL)
  return;
 printf("%d ",tree->data);
 PreOrder(tree->lchild);
 PreOrder(tree->rchild);
}

b.层次遍历

NoOder(BITREE *tree)
{
 q = create_empty_queue();

 EnterQueue(q,tree);

 while(!is_empty_queue(q))
 {
  tree = DeleteQueue(q);
  printf("%d",tree->data);

  if(tree->lchild != NULL)
  {
   EnterQueue(q,tree->lchild);
  }

  if(tree->rchild != NULL)
  {
   EnterQueue(q,tree->rchild);
  }
 }
}

B.图

1.存储

a.邻接矩阵
typedef struct
{
 vtype v[N];
 int matrix[N][N];
}Graph

b.链接表
typedef struct node
{
 vtype v;
 struct node *next;
}LINKGRAPH;

2.遍历

a.深度遍历

DFS(Graph * G,int v)
{
 visited[v] = 1;
 printf("V%d",v);

 u = FirstAdj(G,v);

 while(u >= 0)
 {
  if(!visited[u])
   DFS(G,u);

  u = NextAdj(G,u,v);
 }
}

 b.广度遍历
BFS(Graph *G,int v)
{
 visited[v] = 1;
 EnterQueue(G,v);

 while(!is_empty_queue(q))
 {
  v = DelelteQueue(q);
  printf("V%d ",v);

  u = FirstAdj(G,v);

  while(u >= 0)
  {
   if(!visited[u])
   {
    visited[u] = 1;
    EnterQueue(q,u);
   }

   u = NextAdj(G,u,v);
  }
 }
}

ps:

1设结点data域为整数,求链表中相邻两结点data之和为最大的第一结点的指针。

LINKLIST * Adjmax(LINKLIST *l)
{
 LINKLIST *p,*q,*s;
 int
 p = l->next;
 s = p;
 if(NULL == p)
 {
  return s;
 }
 q = p->next;
 if(NULL == q)
 {
  return s;
 }
 sumf = p->data + q->data;
 while(NULL != q->next)
 {
  p = q;
  q = q->next;
  sumr = p->data + q->data;
  if(sumf < sumr)
  {
   s = p;
   sumf = sumr;
  }  
 }
 return s;
}

你可能感兴趣的:(数据结构)