- 2023-09-15 五角大楼探索生成式人工智能解决方案
泰格
佳文砺道智库2023-09-1409:58发表于北京据“防务头条”网9月12日报道,美国研究机构“特殊竞争力研究项目”(SCSP)的一份报称告,如果美国想在制定生成式人工智能的开发和使用规范方面引领全球,就必须增加联邦研发支出,建立新的政府机构,或者改变现有的政府机构。生成式人工智能可以加速新药和网络安全解决方案的发现,从根本上实现更好的计算机网络,并提高公众的理解。但在对手手中,它可能会导致更多
- 曾经优秀的人,怎么突然间就不优秀了
码农之屋
职场上有很多辛酸事,很多合伙人出局的故事,很多技术骨干被裁员的故事。说来模板都类似,曾经是名校毕业,曾经是优秀员工,曾经被领导表扬,曾经业绩突出,然而突然有一天,因为种种原因,被裁员了,想申诉,想求解释,结论是,能力不匹配,未能与企业一起成长云云。明明曾经优秀,怎么就突然不优秀了,拖后腿了呢。这有两说,一说是企业冷血,卸磨杀驴,嫌弃老人成本太高,又没有年轻人肯卖命;另一说是,一些老白兔们不知道追求
- GEV/POT/Markov/点过程/贝叶斯极值全解析;基于R语言的极值统计学
极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。专题一、独立假设下的极值统计建模主要内容包括:1.广义极值模型.2.极小值的处理.3.广义Pareto模型.4.第r大次序统计量建模.5.R语言中极值统计学包.6.实例操作1-2.(提供案例数据及代码)专题二、平稳时间序列的极值统计建
- AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
当你的团队还在手动拼装显卡集群时,聪明人早已教会Kubernetes自动调度千卡。就像交响乐团需要指挥家,万级GPU需要云原生调度艺术。深夜的机房,硬件工程师老张盯着监控屏上跳动的红色警报——手工组装的千卡集群再次因单点故障崩溃。而隔壁团队通过Kubernetes调度的百卡集群,训练效率竟高出他们47%。这不是魔法,而是云原生调度的降维打击。一、千卡训练:为什么传统方法行不通?想象指挥没有乐谱的千
- 从近日爆红的“猫爪杯”看星巴克的“网红”营销策略
爆米花POI
最近星巴克又又又火了,起因是一款长相呆萌可爱的星巴克“猫爪杯”爆红于网络。有人竟然为了一款杯子通宵排队,更有甚者在店内大打出手。先让我们来欣赏一下这款价值上千(某宝上搜索许多店家标价1000+,官网已断货)的杯子究竟长啥样:图片发自App不得不说,这的确是一款非常有创意,很有少女心的杯子。这是星巴克樱花系列商品之一,是当季流行元素。首先,这款杯子的设计的确很走心,一下子抓住了一批女孩子们砰砰跳动的
- vscode 一直连不上远程,网络是通的,ssh 也能直接登录远程
心如止水-WTF
vscode网络ssh
vscode一直连不上远程,网络是通的,ssh也能直接登录远程,但vscode死活连不上解决办法:取消勾选remote.SSH.useExecServer打开VSCode设置(Ctrl+,→搜索useExecServer)取消对应的勾选即可
- 微信小程序案例 - 本地生活(列表页面)
一、前言随着微信小程序的普及,越来越多的生活服务类应用开始基于微信小程序进行开发。其中,“本地生活”类小程序(如美食、团购、周边游等)因其贴近用户日常需求而广受欢迎。本篇文章将以一个“本地生活列表页面”的实际案例为例,手把手带你实现一个完整的微信小程序本地生活类首页列表页面,包括:✅页面结构设计✅数据绑定与渲染✅列表项布局与样式优化✅下拉刷新与上拉加载更多✅搜索功能初步实现✅真实数据模拟与静态化处
- 淡定
李庆建
自拍,请注意看后面的画“爸爸,爸爸,宝宝烧到39.5度了!”睁开困意十足的眼睛,脑袋空白了1,2秒,看着爱人焦急的样子,赶紧在脑袋里搜索用什么词回复她。“物理降温了吗?这么晚送到医院也没有好的医生,我们再观察下。”摸摸宝宝的额头、脖子,确实很烫。宝宝因而也很烦躁,一直哭,脸蛋也变得通红。边安抚,边观察宝宝的体温变化,宝宝终于慢慢安静下来了,再次上床前看看墙上的钟,时间指向两点半。第二天醒来,爱人说
- 学习笔记(39):结合生活案例,介绍 10 种常见模型
宁儿数据安全
#机器学习学习笔记生活
学习笔记(39):结合生活案例,介绍10种常见模型线性回归只是机器学习的“冰山一角”!根据不同的任务场景(分类、回归、聚类等),还有许多强大的模型可以选择。下面我用最通俗易懂的语言,结合生活案例,介绍10种常见模型及其适用场景:一、回归模型(预测连续值,如房价)1.决策树(DecisionTree)原理:像玩“20个问题”游戏,通过一系列判断(如“面积是否>100㎡?”“房龄是否0.5就判为“会”
- 基于R、Python的Copula变量相关性分析及AI大模型应用
梦想的初衷~
环境气象人工智能r语言python
在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。例如,皮尔逊相关系数只能反映变量间的线性相关,而秩相关则更多的适用于等级变量。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间
- 【vLLM 学习】Encoder Decoder Multimodal
HyperAI超神经
vLLMvLLMKV缓存大语言模型推理加速内存管理开源项目在线教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/*在线运行vLLM入门教程:零基础分步指南源码examples/offline_inference/encoder_decoder_multimodal.py#SPDX-License-Identifier:Apach
- LLM系统性学习完全指南(初学者必看系列)
GA琥珀
LLM学习人工智能语言模型
前言这篇文章将系统性的讲解LLM(LargeLanguageModels,LLM)的知识和应用。我们将从支撑整个领域的数学与机器学习基石出发,逐步剖析自然语言处理(NLP)的经典范式,深入探究引发革命的Transformer架构,并按时间顺序追溯从BERT、GPT-2到GPT-4、Llama及Gemini等里程碑式模型的演进。随后,我们将探讨如何将这些强大的基础模型转化为实用、安全的应用,涵盖对齐
- Copula 回归与结构方程模型:R 语言构建多变量因果关系网络
技术点目录专题一、R及Python语言及相关性研究初步专题二、二元Copula理论与实践(一)专题三、二元Copula理论与实践(二)【R语言为主】专题四、Copula函数的统计检验与选择【R语言为主】专题五、高维数据与VineCopula【R语言】专题六、正则VineCopula(一)【R语言】专题七、正则VineCopula(二)【R语言】专题八、时间序列中的Copula【R语言】专题九、Co
- DataLoader
在PyTorch中,DataLoader是torch.utils.data模块中的一个重要类,用于将数据集包装成可迭代对象,在训练和测试模型时提供了高效、便捷的数据加载和批处理功能。主要作用:批量处理数据:将数据集中的样本整理成一个个批次(batch),方便模型进行一次处理多个样本,加速训练过程。例如,设置batch_size=32,就会每次从数据集中取出32个样本组成一个批次。数据打乱:在训练过
- 网络编程(服务器与端客户)
陈佳梁
网络
指令1.ipconfig本机ip地址打开终端,在黑窗口中输入ipconfig,回车后我们可以看到这两个不同的IP地址相比于IPv4,IPv6优于前者这里不再赘述。而IPv4在早期有着简单、易于实现、互操作性好的优势,但是现在其地址逐渐耗尽。2.pingip地址ip:终端唯一ip地址(127.0.0.1:本地回环地址)3.port端口号(用来识别TCP/IP网络中互连的主机和路由器)七层模型七层模型
- 【C++进阶】二叉搜索树特性 && 二叉搜索树模拟实现
花影随风_
数据结构算法
0.前言(对学习map与set内容的铺垫)我们之前在c语言部分数据结构初阶就已经讲过二叉树了,为什么那时我们不讲二叉搜索树呢?这是有原因的,这里讲二叉树进阶是因为:1.map与set特性需要先铺垫二叉搜索树的概念,理解了二叉搜索树可以更好的理解map与set2.当时用c语言讲二叉树时没有将进阶,是因为这部分较难,长时间下容易忘记。3.一些OJ题更适合用c++解决,当时用c语言会比较麻烦,需要动态开
- 关于市场主流大模型的系统性整理和分析(必看系列,附汇总表格)
GA琥珀
LLM人工智能语言模型
一、旗舰专有模型生态系统在生成式AI的高端市场,几家公司凭借其强大的研发实力和资本支持,构建了以旗舰专有模型为核心的生态系统。它们通过API和订阅服务提供最先进的功能,引领着技术发展的方向。1.1OpenAI:在位的创新者OpenAI作为行业的先行者,其战略核心是建立一道“性能护城河”。通过持续发布性能领先(且价格高昂)的模型,锁定那些愿意为顶级能力支付溢价的用户和企业。其快速的迭代周期旨在使其始
- 大学毕业生们需了解的我国近期就业市场现状
劲能就业说
近日,国家统计局公布,2019年前三季度我国城镇新增就业1097万人,基本完成全年就业目标。第三季度就业市场求人倍率为1.24,岗位供应总量充足。漂亮的数据背后,自然离不开政府将稳就业放在各项工作首位的高度重视,以及全国数千场大型招聘会的作用;也离不开随着我国产业结构调整,吸纳就业能力不断增强的综合国力支撑。不过,我国当前的就业市场仍存在着比较严重的供求匹配度失衡问题,就业市场的主要矛盾已经从总量
- GPU网络运维
一行代码通万物
网络运维GPU
一、GPU网络架构与核心技术GPU集群网络需适配分布式训练中“多节点数据同步”(如all-reduce、broadcast)的高频、大流量需求,主流技术方案及特点如下:网络技术核心优势适用场景运维重点InfiniBand低延迟(~1us)、高带宽(400Gb/s)、原生RDMA支持超大规模集群(≥1000节点)、千亿参数模型训练子网管理、固件兼容性、链路健康RoCE(RDMAoverConverg
- python automl_自动化的机器学习(AutoML):将AutoML部署到云中
编辑推荐:在本文中,将介绍一种AutoML设置,使用Python、Flask在云中训练和部署管道;以及两个可自动完成特征工程和模型构建的AutoML框架。本文来自于搜狐网,由火龙果软件Alice编辑、推荐。AutoML到底是什么?AutoML是一个很宽泛的术语,理论上来说,它囊括从数据探索到模型构建这一完整的数据科学循环周期。但是,我发现这个术语更多时候是指自动的特征预处理和选择、模型算法选择和超
- RN 新架构到底牛在哪?一张图看懂「砍线程、省 Bridge、帧率拉满」
wayne214
架构reactnative
新旧架构的核心区别“新架构把原来基于Bridge的异步JSON通信,变成了基于JSI的同步直接调用,并拆掉了启动时全量初始化、按需加载模块”。下面从6个维度把差异展开说明。维度旧架构(≤0.67)新架构(Fabric+TurboModules)通信模型Bridge:JS→JSON→原生,异步、串行、易阻塞JSI:JS直接持有C++HostObject引用,可同步调用渲染管线JS线程→Shadow线
- 谷歌云(GCP)入门指南:从零开始搭建你的第一个云应用
AI云原生与云计算技术学院
AI云原生与云计算perl服务器网络ai
谷歌云(GCP)入门指南:从零开始搭建你的第一个云应用关键词:谷歌云、GCP、云应用搭建、入门指南、云计算摘要:本文旨在为初学者提供一份全面的谷歌云(GCP)入门指南,详细介绍如何从零开始搭建第一个云应用。通过逐步分析推理,我们将涵盖背景知识、核心概念、算法原理、数学模型、项目实战、实际应用场景、工具资源推荐等多个方面,帮助读者深入理解GCP的使用方法和搭建云应用的流程,为后续的云计算实践打下坚实
- Synergizing RAG and Reasoning: A Systematic Review-RAG与推理能力深度结合-新方向
数据分析能量站
机器学习人工智能
欢迎关v:数据分析能量站0论文小结一、研究背景与核心问题大语言模型(LLM)在处理复杂任务时面临两大瓶颈:知识局限性:纯LLM存在“知识幻觉”(编造事实)和“领域知识缺口”;推理浅度:传统检索增强生成(RAG)仅通过关键词匹配获取信息,无法处理多跳推理、语义歧义等复杂需求。核心主张:RAG与推理的深度整合(RAG+Reasoning)是突破上述瓶颈的关键,通过“检索提供实时知识,推理赋予逻辑能力”
- CentOS下配置java环境变量classpath
天海华兮
javaSEjavacentos环境变量clsspath
CentOS下配置java环境变量classpathhttp://t.zoukankan.com/bincoding-p-6159847.htmlPATH和CLASSPATHPATH环境变量。作用是指定命令搜索路径,在shell下面执行命令时,它会到PATH变量所指定的路径中查找看是否能找到相应的命令程序。我们需要把jdk安装目录下的bin目录增加到现有的PATH变量中,CLASSPATH环境变量
- 人工智能服务器处理器的全新定义 两大头部品牌旗舰款的王者之争!云储存cpu_云服务器处理器_企业服务器处理器
一、旗舰处理器架构解析IntelXeon6900系列代表着英特尔在服务器处理器领域的最新成果,采用增强版Intel7制程工艺打造。该系列最高配置56个物理核心,通过超线程技术支持112个逻辑线程,在处理多线程任务时展现出卓越的性能表现。内存子系统方面,支持8通道DDR5-4800内存配置,最高可扩展至4TB容量,为内存密集型应用提供了充足带宽。特别值得一提的是其集成的AMX高级矩阵扩展指令集,这项
- 【回溯法】n皇后问题 C/C++ (附代码)
haaaaaaarry
算法设计与分析c语言c++开发语言回溯法算法
问题描述在一个n*n的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋规则,皇后可以攻击与其在同一行,同一列或者同一对角线的其他皇后,求合法摆放的方案数。问题分析通过递归和回溯的方法,逐行放置皇后,并在每一步检查当前位置是否安全。如果安全,则继续放置下一个皇后;如果不安全,则回溯到上一步,尝试其他位置。代码数据结构intx[]:存放解向量,即第i个皇后的位置intsum:记录解的个数#define_
- CentOS下配置java环境变量
夜雨微澜醉挽清风
CentOSCentOS
CentOS下配置java环境变量一.需要自己配置的环境变量二.三种配置环境变量的方法一.需要自己配置的环境变量PATH环境变量。作用是指定命令搜索路径,在shell下面执行命令时,它会到PATH变量所指定的路径中查找看是否能找到相应的命令程序。我们需要把jdk安装目录下的bin目录增加到现有的PATH变量中,bin目录中包含经常要用到的可执行文件如javac/java/javadoc等待,设置好
- 院级医疗AI管理流程—基于数据共享、算法开发与工具链治理的系统化框架
Allen_Lyb
医疗高效编程研发人工智能算法时序数据库经验分享健康医疗
医疗AI:从“单打独斗”到“协同共进”在科技飞速发展的今天,医疗人工智能(AI)正以前所未有的速度改变着传统医疗模式。从最初在影像诊断、临床决策支持、药物发现等单一领域的“单点突破”,医疗AI如今已迈向“系统级协同”的新阶段。曾经,医疗AI的应用多集中在某一特定环节,比如利用深度学习算法分析医学影像,辅助医生进行疾病诊断。这种单点突破式的应用虽然在一定程度上提高了医疗效率,但随着医疗行业对AI技术
- python--自动化的机器学习(AutoML)
Q_ytsup5681
python自动化机器学习
自动化机器学习(AutoML)是一种将自动化技术应用于机器学习模型开发流程的方法,旨在简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型**[^3^]。具体介绍如下:1.自动化的概念:自动化是指使设备在无人或少量人参与的情况下完成一系列任务的过程。这一概念随着电子计算机的发明和发展而不断进化,从最初的物理机械到后来的数字程序控制,再到现在的人工智能和机器学习,自动化已经渗
- 面试高频题 力扣 130. 被围绕的区域 洪水灌溉(FloodFill) 深度优先遍历(dfs) 暴力搜索 C++解题思路 每日一题
Q741_147
C/C++每日一题:从语法到算法面试leetcode深度优先c++洪水灌溉
目录零、题目描述一、为什么这道题值得你花时间掌握?二、题目拆解:提取核心关键点三、解题思路:从边界入手,反向标记四、算法实现:深度优先遍历(DFS)+两次遍历五、C++代码实现:一步步拆解代码拆解时间复杂度空间复杂度七、坑点总结八、举一反三九、总结零、题目描述题目链接:被围绕的区域题目描述:示例1:输入:board=[[“X”,“X”,“X”,“X”],[“X”,“O”,“O”,“X”],[“X”
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号