- Ubuntu20.04 RTX4060 AI环境搭建
stxinu
人工智能人工智能
下面记录在Ubuntu20.04环境下,使用ASUSATS-RTX4060-O8G-V2显卡,搭建NvidiaTensorRT开发环境。1.安装步骤0)准备工作使用如下命令创建我们的工作目录:mkdir~/nvidia再使用如下命令进入到上面的目录(接下来的步骤,如无特殊说明,均在该目录下进行):cd~/nvidia1)安装CUDA下载并安装NVIDIACUDAToolkit:wgethttps:
- 标签转换脚本 - VOC格式转COCO格式,即voc2coco,xml2json 附VOC及COCO标签格式详解
Limiiiing
YOLO训练/写作脚本YOLO计算机视觉目标检测深度学习
前言本文的脚本功能为将VOC数据集的标签文件xml转成COCO的标签文件,指定自己的VOC数据集的标签文件路径后,可一键运行转成COCO的标签文件。专栏目录:YOLO训练/写作脚本目录一览|涉及标签转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件专栏地址:YOLO训练/写作脚本——丰富文章内容,增强实验信服力,助力发文!!!文章目录前言一、VOC数据集介绍1.1总体结构1.2各标
- 标签转换脚本 - VOC格式转YOLO格式,即voc2yolo,xml2txt 附VOC及YOLO标签格式详解
Limiiiing
YOLO训练/写作脚本YOLO深度学习计算机视觉目标检测
前言本文的脚本功能为将VOC数据集的标签文件xml转成YOLO的标签文件,指定自己的VOC数据集的标签文件路径后,可一键运行转成YOLO的标签文件。专栏目录:YOLO训练/写作脚本目录一览|涉及标签转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件专栏地址:YOLO训练/写作脚本——丰富文章内容,增强实验信服力,助力发文!!!文章目录前言一、VOC数据集介绍1.1总体结构1.2各标
- 数据集格式转换——json2txt、xml2txt、txt2json【复制就能用】
kay_545
YOLO11改进有效涨点python人工智能机器学习
秋招面试专栏推荐:深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转本专栏所有程序均经过测试,可成功执行专栏地址:YOLO11入门+改进涨点——点击即可跳转欢迎订阅目录json2txt脚本xml2txttxt2json
- yolo模型coco数据集详解
工头阿乐
深度学习YOLO
深度学习文章目录深度学习前言前言instances_train2017.json和instances_val2017.json文件均分为五大部分,这五部分对应的关键字分别为info、licenses、images、annotations、categories。{"info":info,"licenses":[license1,license2,license3,...],"images":[ima
- Ultralytics包引起的编码报错问题
Xylokrysen
深度学习深度学习YOLO
安装完Ultralytics包后,加载YOLO相关模型,执行报错:UnicodeEncodeError:'gbk'codeccan'tencodecharacter'\u0467'inposition3:illegalmultibytesequence这个错误是由于文件编码问题引起的,Ultralytics在初始化时会尝试创建或更新配置文件settings.yaml,而Windows系统默认使用G
- Debian 12系统中允许Root远程SSH登录解决方法!
debian运维linux
在Debian12系统中开启允许SSH远程Root登录的步骤如下:步骤1:修改SSH服务端配置备份原配置文件(避免操作失误):sudocp/etc/ssh/sshd_config/etc/ssh/sshd_config.bak编辑SSH配置文件:sudonano/etc/ssh/sshd_config找到并修改以下参数:将PermitRootLogin的值改为yes(如果行首有#注释符,需删除注释
- yolov4
zzh-
笔记
V4贡献:亲民政策,单GPU就能训练的非常好,接下来很多小模块都是这个出发点两大核心方法,从数据层面和网络设计层面来进行改善消融实验,感觉能做的都让他给做了,这工作量不轻全部实验都是单GPU完成,不用太担心设备了Bagoffreebies(BOF)只增加训练成本,但是能显著提高精度,并不影响推理速度数据增强:调整亮度、对比度、色调、随机缩放、剪切、翻转、旋转网络正则化的方法:Dropout、Dro
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- YOLOv8n-OBB使用C#在windows10进行部署(CPU)
cd_Ww777
YOLO
1.训练YOLOv8-OBB模型1.1数据集制作所用标注工具:X-AnyLabeling下载链接:https://github.com/CVHub520/X-AnyLabeling/releases/download/v2.3.6/X-AnyLabeling-CPU.exe附上两张图片为标注过程中的重要步骤;标注快捷键的使用具体参考官方文档,附图为简单实用的快捷键。https://github.c
- C#学习笔记(3): 调用YOLOv8
playerofIE
c#学习笔记YOLOpython
最近做的项目需要C#编写上位机程序,同时也要使用yolo进行深度学习检测。使用pythonnet调用写好的py文件,C#代码如下:Runtime.PythonDLL="python310.dll";PythonEngine.Initialize();using(Py.GIL()){dynamicsys=Py.Import("sys");dynamictorch=Py.Import("torch")
- YOLOv8 的简介 及C#中如何简单应用YOLOv8
码上有潜
YOLOv8YOLO
YOLOv8是YOLO(YouOnlyLookOnce)系列中的最新版本,是一种用于目标检测和图像分割的深度学习模型。YOLO模型以其快速和准确的目标检测性能而著称,广泛应用于实时应用程序中。主要特点高效性:YOLOv8在保持高检测速度的同时,进一步提高了检测精度。端到端训练:可以直接从图像输入端到分类结果输出,简化了训练和部署过程。改进的架构:包括更深的网络结构、更复杂的特征提取方法以及更高效的
- Yolov11目标检测(ultralytics)
@M_J_Y@
目标检测YOLO目标检测人工智能
Yolov11目标检测(ultralytics)1.克隆仓库2.安装环境依赖3.训练、验证、推理以及onnx模型导出1.克隆仓库从官网下载Yolov11到本地。
[email protected]:ultralytics/ultralytics.git2.安装环境依赖pipinstall-e.-ihttps://pypi.mirrors.ustc.edu.cn/simple/3.训练、验证
- jetson xavier nx 开启usb bulk 模式
超级无敌霹雳破坏龙
嵌入式硬件arm开发
一、参考资料与信息:jetsonxaviernx使用jetpacksdk5.0.2,20.04ubantu。CONFIG_USB_CONFIGFS_F_FS=y(通过ConfigFS的FunctionFS支持)。在较新的内核版本中,CONFIG_USB_FUNCTIONFS已被CONFIG_USB_CONFIGFS_F_FS替代。请连接host设备后再启动程序https://developer.d
- 使用 labelImg 制作YOLO系列目标检测数据集(
2401_89791028
YOLO目标检测人工智能
文章转载自K同学,谨防原文失效可参考link1和link2和link3LabelImg介绍LabelImg支持文件夹的导入,在标完一张后,在左侧选择NextImage就可以切换到下一张继续了。输出格式部分,目前LabelImg支持YOLO和PascalVOC2种格式,前者标签文件后缀是.txt件,而后者标签文件后缀是.xml件。标签保存在对应的labels文件夹下,与images中的图片文件名一一
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- YOLOv8 改进:添加 GAM 注意力机制
鱼弦
人工智能时代YOLO
YOLOv8改进:添加GAM注意力机制引言在目标检测领域,YOLO(YouOnlyLookOnce)网络因其速度和准确性被广泛应用。然而,随着场景的复杂化,仅仅依靠卷积特征可能不足以捕捉图像中的重要信息。引入注意力机制,如GAM(GlobalAttentionMechanism),可以有效提高模型对关键区域的关注,从而提升检测性能。技术背景GAM是一种全局注意力机制,通过全局信息聚合和自适应权重分
- [生活] 如何区分 s ms us ns
QT的狗
生活
注意缩写和原词不一定对应喔ssecondmsmillisecondusmicrosecondnsnanosecond
- Google Gemini 大模型技术架构剖析
musicml
人工智能
▼最近直播超级多,预约保你有收获近期直播:《从原理到实践教你做出一个Gemini/ChatGPT》—1—Gemini技术架构剖析Google新的多模态模型家族Gemini,它在文本、图像、音频、视频等方面具有卓越的能力。Gemini系列包括Ultra、Pro和Nano三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。GeminiUltra是最强大的模型,可在各种高度复杂的任务(包括推理和多
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- lighttpd安装和配置https
hailangnet
Debian笔记httpshttplighttpd
aptinstalllighttpdapt-getinstallphp-cgilighttpd-enable-modfastcgifastcgi-phpservicelighttpdforce-reloadlighttpd配置httpssudonano/etc/lighttpd/lighttpd.conf加入:server.modules+=("mod_openssl")$SERVER["sock
- Python—JSON格式标签转换为TXT格式标签详细教程2(附完整代码)
资源补给站
python图像处理笔记pythonjson开发语言
这个代码主要是解析一个json文件转换成多个txt文件使用的,尤其是便于yolo训练decode_json函数中的convert函数确实是用于将坐标缩放到0-1之间的。但是,您在调用decode_json函数时设置了is_convert=False,这意味着坐标缩放功能被关闭了代码详解数字规范化的会将坐标缩放至(0—1)区间主要是修改这两个地方即可,话不多说,咱们直接附代码#下面是将`is_con
- YOLOv8改进添加swin transformer
兜里没有一毛钱
YOLO系列改进管理YOLOtransformerpython
最近在做实验,需要改进YOLOv8,去网上找了很多教程都是充钱才能看的,NND这对一个一餐只能吃两个菜的大学生来说是多么的痛苦,所以自己去找代码手动改了一下,成功实现YOLOv8改进添加swintransformer,本人水平有限,改得不对的地方请自行改正。第一步,在ultralytics\nn\modules\block.py代码中的最后部分中添加swintransformer代码,代码如下:#
- YOLOv5+UI界面在车辆检测中的应用与实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪人工智能
1.引言随着智能交通系统(ITS)的快速发展,车辆检测已成为计算机视觉领域的重要研究方向。车辆检测技术广泛应用于交通流量监控、车辆违章抓拍、无人驾驶等场景中。近年来,深度学习技术的突破,特别是卷积神经网络(CNN)的崛起,使得目标检测技术取得了显著进展。其中,YOLO(YouOnlyLookOnce)系列模型以其高效的实时检测能力和出色的性能成为车辆检测领域的首选方法之一。在本文中,我们将基于YO
- YOLO11改进-模块-引入多尺度差异融合模块MDFM
一勺汤
YOLOv11模型改进系列深度学习人工智能YOLOYOLOv11目标检测模块改进
遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的RSCD任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续RSCD任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了RSCD的结果。为解决上述问题,本文通过孪生卷积网络提取不
- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 智慧医疗蛀牙检测数据集VOC+YOLO格式2792张3类别
FL1623863129
数据集深度学习机器学习人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2792标注数量(xml文件个数):2792标注数量(txt文件个数):2792标注类别数:3标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["decaycavi
- 使用yolov8+flask实现精美登录界面+图片视频摄像头检测系统
FL1623863129
深度学习YOLOflaskpython
这个是使用flask实现好看登录界面和友好的检测界面实现yolov8推理和展示,代码仅仅有2个html文件和一个python文件,真正做到了用最简洁的代码实现复杂功能。测试通过环境:windowsx64anaconda3+python3.8ultralytics==8.3.81flask==1.1.2torch==2.3.0运行步骤:安装好环境执行pythonlogin.py后端实现代码:from
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比