1.sc
SparkContext,Spark程序的入口点,封装了整个spark运行环境的信息。
2.进入spark-shell
$>spark-shell
$scala>sc
API:
SparkContext
RDD:
resilient distributed dataset,弹性分布式数据集。等价于集合。
spark实现Wordcount
//加载文本文件,以换行符方式切割文本。Array(hello world2,hello world2,...)
val rdd1 = sc.textFile("/home/ubuntu/test.txt");
val rdd2 = rdd1.flatMap(line=>line.split(" "));
val rdd3 = rdd2.map(word=>(word,1));
val rdd4 = rdd3.reduceByKey(_+_);
rdd4.collect
一行代码:
scala> sc.textFile("/home/ubuntu/test.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
结果:
res2: Array[(String, Int)] = Array((world2,2), (world4,1), (hello,4), (world3,1))
过滤包含“wor”的单词
scala> sc.textFile("/home/ubuntu/test.txt").flatMap(_.split(" ")).filter(_.contains("wor")).map((_,1)).reduceByKey(_+_).collect
res3: Array[(String, Int)] = Array((world2,2), (world4,1), (world3,1))
windows下:
idea编写Scala程序,引入spark类库,完成wordcount
1.添加Scala框架支持,没有则安装Scala插件(2.11.8),spark最新版本2.3.2(scala2.11.8)
2.maven添加spark依赖
org.apache.spark
spark-core_2.11
2.3.2
Scala版本
import org.apache.spark.{SparkConf, SparkContext}
/**
* scala版本
*/
object WordCountScala {
def main(args: Array[String]): Unit = {
//创建spark配置对象
val conf = new SparkConf();
//conf.setAppName("WordCountScala");
//设置master属性
//conf.setMaster("local");
//通过conf创建sc
val sc = new SparkContext(conf);
//加载文本文件
// val rdd1 = sc.textFile("d:/scala/test.txt");
val rdd1 = sc.textFile(args(0));
//压扁
val rdd2 = rdd1.flatMap(line => line.split("\\s+"));
//映射w=>(w,1)
val rdd3 = rdd2.map((_, 1))
val rdd4 = rdd3.reduceByKey(_ + _)
val r = rdd4.collect()
r.foreach(println)
}
}
java版本
package com.it18zhang.spark.java;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
/**
* java版本
*/
public class WordCountJava2 {
public static void main(String[] args) {
//创建SparkConf对象
SparkConf conf = new SparkConf();
//conf.setAppName("WordCountJava2");
//conf.setMaster("local");
//上下文
JavaSparkContext sc = new JavaSparkContext(conf);
//加载文本文件
// JavaRDD rdd1 = sc.textFile("d:/scala/test.txt");
JavaRDD rdd1 = sc.textFile(args[0]);
//接口回调机制产生匿名内部类对象
JavaRDD rdd2 = rdd1.flatMap(new FlatMapFunction() {
public Iterator call(String s) throws Exception {
List list = new ArrayList();
String[] arr = s.split("\\s+");
for (String ss:arr){
list.add(ss);
}
return list.iterator();
}
});
//映射,word=>(word,1)
JavaPairRDD rdd3 = rdd2.mapToPair(new PairFunction() {
public Tuple2 call(String s) throws Exception {
return new Tuple2(s, 1);
}
});
//reduce化简
JavaPairRDD rdd4 = rdd3.reduceByKey(new Function2() {
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
List> list = rdd4.collect();
for (Tuple2 t:list){
System.out.println(t._1() + ":" + t._2());
}
}
}
打包成 SparkDemo1-1.0-SNAPSHOT.jar
spark-submit --master local --class com.it18zhang.spark.scala.WordCountScala --name MyWordCount SparkDemo1-1.0-SNAPSHOT.jar /home/ubuntu/test.txt
Spark集群模式
1.local
nothing!
spark-shell --master local; //默认
2.standalone
独立模式
a.复制spark目录到其他主机
b.配置其他主机的所有环境变量
[/etc/profile]
SPARK_HOME
PATH
c.配置master节点的slaves
s1
s2
s3
d.启动spark集群
/soft/spark/sbin/start-all.sh
e.webui
http://s0:8080/
提交作业到完全分布式spark集群
1.需要启动hadoop集群(只需要hdfs)
start-hdfs.sh
2.put文件到hdfs
hdfs dfs -put test.txt /user/ubuntu
3.运行spark-submit
spark-submit --master spark://s0:7077 --class com.it18zhang.spark.scala.WordCountScala --name MyWordCount SparkDemo1-1.0-SNAPSHOT.jar hdfs://s0:8020/user/ubuntu/test.txt
ubuntu@s0:~$ xcall.sh jps
============ s0 jps =============
3207 NameNode
4504 Jps
3432 SecondaryNameNode
3976 Master
============ s1 jps =============
3522 Worker
3845 Jps
3276 DataNode
============ s2 jps =============
3827 Jps
3276 DataNode
3517 Worker
============ s3 jps =============
3197 DataNode
3758 Jps
3439 Worker
脚本分析
[start-all.sh]
sbin/spark-config.sh
sbin/spark-master.sh //启动master进程
sbin/spark-slaves.sh //启动worker进程