spark调优总结

1.10.用户访问session分析
方案
1、按条件筛选session
先查出指定的任务,获取任务的查询参数
进行session粒度聚合,从用户访问表(user_visit_action)查询指定日期范围内的行为数据
将session粒度聚合数据 与用户信息进行join。得到RDD
最后进行session数据过滤 ( filter算子。ValidUtil工具类)

2、聚合统计:统计出符合条件的session中,访问时长在1s3s、4s6s、7s9s、10s30s、30s60s、1m3m、3m10m、10m30m、30m以上各个范围内的session占比;访问步长在13、46、79、1030、30~60、60以上各个范围内的session占比
自定义Accumulator进行指标计算 定义一个类实现AccmulatorParam接口 实现zero addInplace addAccumulator add方法 写到mysql中

3、在符合条件的session中,按照时间比例随机抽取1000个session
Session随机抽取:按每天的每小时的session数量, 占当天session总数的比例 ,乘以每天要抽取的session数量,计算出每小时要抽取的session数量 ,然后,在每天每小时的session中,随机抽取之前计算出来的数量的session。

(我们之前有什么数据:session粒度的聚合数据(计算出来session的start_time)
session聚合数据进行映射,将每个session发生的yyyy-MM-dd_HH(start_time)作为key,value就是session_id
对上述数据,使用countByKey算子,就可以获取到每天每小时的session数量
(按时间比例随机抽取算法)每天每小时有多少session,根据这个数量计算出每天每小时的session占比,以及按照占比,需要抽取多少session,可以计算出每个小时内,从0~session数量之间的范围中,获取指定抽取数量个随机数,作为随机抽取的索引
把之前转换后的session数据(以yyyy-MM-dd_HH作为key),执行groupByKey算子;然后可以遍历每天每小时的session,遍历时,遇到之前计算出来的要抽取的索引,即将session抽取出来;抽取出来的session,直接写入MySQL数据库)

4、在符合条件的session中,获取点击、下单和支付数量排名前10的品类
获取符合条件的session访问过的所有品类
计算各品类的点击 下单 支付的次数
自定义二次排序的key 进行二次排序
使用take(10)获取,排序后的前10个品类,就是top10热门品类
将top10热门品类,以及每个品类的点击、下单和支付次数,写入MySQL数据库

5、对于排名前10的品类,分别获取其点击次数排名前10的session
拿到符合筛选条件的session的明细数据
按照session粒度进行聚合 ,获取到session对每个品类点击次数
按照品类id,分组取top10,获取到top10活跃session 。自己写算法,获取到点击次数最多的前10个session,直接写入MySQL表;返回的是sessionid
获取各品类top10活跃session访问明细数据写入mysql

分析

1、按条件筛选session

这里首先提出第一个问题,你要按条件筛选session,但是这个筛选的粒度是不同的,比如说搜索词、访问时间,那么这个都是session粒度的,甚至是action粒度的;那么还有,就是针对用户的基础信息进行筛选,年龄、性别、职业。。;所以说筛选粒度是不统一的。

第二个问题,就是说,我们的每天的用户访问数据量是很大的,因为user_visit_action这个表,一行就代表了用户的一个行为,比如点击或者搜索;那么在国内一个大的电商企业里面,如果每天的活跃用户数量在千万级别的话。那么可以告诉大家,这个user_visit_action表,每天的数据量大概在至少5亿以上,在10亿左右。

那么针对这个筛选粒度不统一的问题,以及数据量巨大(10亿/day),可能会有两个问题;首先第一个,就是,如果不统一筛选粒度的话,那么就必须得对所有的数据进行全量的扫描;第二个,就是全量扫描的话,量实在太大了,一天如果在10亿左右,那么10天呢(100亿),100呢,1000亿。量太大的话,会导致Spark作业的运行速度大幅度降低。极大的影响平台使用者的用户体验。

所以为了解决这个问题,那么我们选择在这里,对原始的数据,进行聚合,什么粒度的聚合呢?session粒度的聚合。也就是说,用一些最基本的筛选条件,比如时间范围,从hive表中提取数据,然后呢,按照session_id这个字段进行聚合,那么聚合后的一条记录,就是一个用户的某个session在指定时间内的访问的记录,比如搜索过的所有的关键词、点击过的所有的品类id、session对应的userid关联的用户的基础信息。

聚合过后,针对session粒度的数据,按照使用者指定的筛选条件,进行数据的筛选。筛选出来符合条件的用session粒度的数据。其实就是我们想要的那些session了。

2、聚合统计

如果要做这个事情,那么首先要明确,我们的spark作业是分布式的。所以也就是说,每个spark task在执行我们的统计逻辑的时候,可能就需要对一个全局的变量,进行累加操作。比如代表访问时长在1s3s的session数量,初始是0,然后呢分布式处理所有的session,判断每个session的访问时长,如果是1s3s内的话,那么就给1s~3s内的session计数器,累加1。

那么在spark中,要实现分布式安全的累加操作,基本上只有一个最好的选择,就是Accumulator变量。但是,问题又来了,如果是基础的Accumulator变量,那么可能需要将近20个Accumulator变量,1s3s、4s6s。。。。;但是这样的话,就会导致代码中充斥了大量的Accumulator变量,导致维护变得更加复杂,在修改代码的时候,很可能会导致错误。比如说判断出一个session访问时长在4s6s,但是代码中不小心写了一个bug(由于Accumulator太多了),比如说,更新了1s3s的范围的Accumulator变量。导致统计出错。

所以,对于这个情况,那么我们就可以使用自定义Accumulator的技术,来实现复杂的分布式计算。也就是说,就用一个Accumulator,来计算所有的指标。

3、在符合条件的session中,按照时间比例随机抽取1000个session

这个呢,需求上已经明确了。那么剩下的就是具体的实现了。具体的实现这里不多说,技术上来说,就是要综合运用Spark的countByKey、groupByKey、mapToPair等算子,来开发一个复杂的按时间比例随机均匀采样抽取的算法。(大数据算法)

4、在符合条件的session中,获取点击、下单和支付数量排名前10的品类

这里的话呢,需要对每个品类的点击、下单和支付的数量都进行计算。然后呢,使用Spark的自定义Key二次排序算法的技术,来实现所有品类,按照三个字段,点击数量、下单数量、支付数量依次进行排序,首先比较点击数量,如果相同的话,那么比较下单数量,如果还是相同,那么比较支付数量。

5、对于排名前10的品类,分别获取其点击次数排名前10的session

这个需求,需要使用Spark的分组取TopN的算法来进行实现。也就是说对排名前10的品类对应的数据,按照品类id进行分组,然后求出每组点击数量排名前10的session。

最后总结一下,通过学习这个模块,通过业务功能的开发,还不说性能调优、troubleshooting、数据倾斜方面的东西。仅仅是业务功能的开发,可以掌握到的技术点:

1、通过底层数据聚合,来减少spark作业处理数据量,从而提升spark作业的性能(从根本上提升spark性能的技巧)
2、自定义Accumulator实现复杂分布式计算的技术
3、Spark按时间比例随机抽取算法
4、Spark自定义key二次排序技术
5、Spark分组取TopN算法
6、通过Spark的各种功能和技术点,进行各种聚合、采样、排序、取TopN业务的实现

1.10.1.性能调优
分配资源:
1、分配哪些资源?executor、cpu per executor、memory per executor、driver memory

2、在哪里分配这些资源?在我们在生产环境中,提交spark作业时,用的spark-submit shell脚本,里面调整对应的参数

/usr/local/spark/bin/spark-submit
–class cn.spark.sparktest.core.WordCountCluster
–num-executors 3 \ 配置executor的数量
–driver-memory 100m \ 配置driver的内存(影响不大)
–executor-memory 100m \ 配置每个executor的内存大小
–executor-cores 3 \ 配置每个executor的cpu core数量
/usr/local/SparkTest-0.0.1-SNAPSHOT-jar-with-dependencies.jar \

3、调节到多大,算是最大呢?

第一种,Spark Standalone,公司集群上,搭建了一套Spark集群,你心里应该清楚每台机器还能够给你使用的,大概有多少内存,多少cpu core;那么,设置的时候,就根据这个实际的情况,去调节每个spark作业的资源分配。比如说你的每台机器能够给你使用4G内存,2个cpu core;20台机器;executor,20;4G内存,2个cpu core,平均每个executor。

第二种,Yarn。资源队列。资源调度。应该去查看,你的spark作业,要提交到的资源队列,大概有多少资源?500G内存,100个cpu core;executor,50;10G内存,2个cpu core,平均每个executor。

一个原则,你能使用的资源有多大,就尽量去调节到最大的大小(executor的数量,几十个到上百个不等;executor内存;executor cpu core)

调节并行度
并行度:其实就是指的是,Spark作业中,各个stage的task数量,也就代表了Spark作业的在各个阶段(stage)的并行度。
(Spark作业,Application,Jobs,action(collect)触发一个job,1个job;每个job拆成多个stage,发生shuffle的时候,会拆分出一个stage,如reduceByKey)
1、task数量,至少设置成与Spark application的总cpu core数量相同(最理想情况,比如总共150个cpu core,分配了150个task,一起运行,差不多同一时间运行完毕)

2、官方是推荐,task数量,设置成spark application总cpu core数量的2~3倍,比如150个cpu core,基本要设置task数量为300~500;
那如果task数量设置成cpu core总数的2~3倍,那么一个task运行完了以后,另一个task马上可以补上来,就尽量让cpu core不要空闲,同时也是尽量提升spark作业运行的效率和速度,提升性能。

3、如何设置一个Spark Application的并行度?
spark.default.parallelism
SparkConf conf = new SparkConf()
.set(“spark.default.parallelism”, “500”)

RDD重构架构以及RDD持久化
一旦出现一个RDD重复计算的情况,就会导致性能急剧降低。

第一,RDD架构重构与优化
尽量去复用RDD,差不多的RDD,可以抽取称为一个共同的RDD,供后面的RDD计算时,反复使用。

第二,公共RDD一定要实现持久化
持久化,也就是说,将RDD的数据缓存到内存中/磁盘中,(BlockManager),以后无论对这个RDD做多少次计算,那么都是直接取这个RDD的持久化的数据,比如从内存中或者磁盘中,直接提取一份数据。

第三,持久化,是可以进行序列化的

如果正常将数据持久化在内存中,那么可能会导致内存的占用过大,这样的话,也许,会导致OOM内存溢出。

当纯内存无法支撑公共RDD数据完全存放的时候,就优先考虑,使用序列化的方式在纯内存中存储。将RDD的每个partition的数据,序列化成一个大的字节数组,就一个对象;序列化后,大大减少内存的空间占用。

序列化的方式,唯一的缺点就是,在获取数据的时候,需要反序列化。

如果序列化纯内存方式,还是导致OOM,内存溢出;就只能考虑磁盘的方式,内存+磁盘的普通方式(无序列化)。

内存+磁盘,序列化

第四,为了数据的高可靠性,而且内存充足,可以使用双副本机制,进行持久化

持久化的双副本机制,持久化后的一个副本,因为机器宕机了,副本丢了,就还是得重新计算一次;持久化的每个数据单元,存储一份副本,放在其他节点上面;从而进行容错;一个副本丢了,不用重新计算,还可以使用另外一份副本。

这种方式,仅仅针对你的内存资源极度充足

RDD调用persist()或者cache() 方法,并传入持久化级别

如果是persist(storageLevel.MEMORY ONLY) 纯内存,无序列化 可以用cache()代替
StoryageLevel.Memory_only_ser,
Memory_and_disk
Memory_and_dist_ser
Disk_only
如果内存充足 要使用双副本高可靠机制
选择后缀带_2 的策略
memory_only_2()

广播变量
广播,Broadcast,将大变量广播出去。而不是直接使用。
用户访问session分析模块中的,按时间比例随机抽取,刚才说的这种随机抽取的map,1M,举例。还算小的。如果你是从哪个表里面读取了一些维度数据,比方说,所有商品品类的信息,在某个算子函数中要使用到。100M。

1000个task。100G的数据,网络传输。集群瞬间因为这个原因消耗掉100G的内存。

这种默认的,task执行的算子中,使用了外部的变量,每个task都会获取一份变量的副本,有什么缺点呢?在什么情况下,会出现性能上的恶劣的影响呢?

map,本身是不小,存放数据的一个单位是Entry,还有可能会用链表的格式的来存放Entry链条。所以map是比较消耗内存的数据格式。

比如,map是1M。总共,你前面调优都调的特好,资源给的到位,配合着资源,并行度调节的绝对到位,1000个task。大量task的确都在并行运行。

这些task里面都用到了占用1M内存的map,那么首先,map会拷贝1000份副本,通过网络传输到各个task中去,给task使用。总计有1G的数据,会通过网络传输。网络传输的开销,不容乐观啊!!!网络传输,也许就会消耗掉你的spark作业运行的总时间的一小部分。

map副本,传输到了各个task上之后,是要占用内存的。1个map的确不大,1M;1000个map分布在你的集群中,一下子就耗费掉1G的内存。对性能会有什么影响呢?

不必要的内存的消耗和占用,就导致了,你在进行RDD持久化到内存,也许就没法完全在内存中放下;就只能写入磁盘,最后导致后续的操作在磁盘IO上消耗性能;

你的task在创建对象的时候,也许会发现堆内存放不下所有对象,也许就会导致频繁的垃圾回收器的回收,GC。GC的时候,一定是会导致工作线程停止,也就是导致Spark暂停工作那么一点时间。频繁GC的话,对Spark作业的运行的速度会有相当可观的影响。

广播变量,初始的时候,就在Drvier上有一份副本。

task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取变量副本,并保存在本地的BlockManager中;此后这个executor上的task,都会直接使用本地的BlockManager中的副本。

executor的BlockManager除了从driver上拉取,也可能从其他节点的BlockManager上拉取变量副本,举例越近越好。

Kryo序列化机制
当使用了序列化的持久化级别时,在将每个RDD partition序列化成一个大的字节数组时,就会使用Kryo进一步优化序列化的效率和性能
在进行stage间的task的shuffle操作时,节点与节点之间的task会互相大量通过网络拉取和传输文件,此时,这些数据既然通过网络传输,也是可能要序列化的,就会使用Kryo

默认情况下,Spark内部是使用Java的序列化机制,ObjectOutputStream / ObjectInputStream,对象输入输出流机制,来进行序列化
但是缺点在于,默认的序列化机制的效率不高,序列化的速度比较慢;序列化以后的数据,占用的内存空间相对还是比较大。
可以手动进行序列化格式的优化

Spark支持使用Kryo序列化机制。Kryo序列化机制,比默认的Java序列化机制,速度要快,序列化后的数据要更小,大概是Java序列化机制的1/10。

所以Kryo序列化优化以后,可以让网络传输的数据变少;在集群中耗费的内存资源大大减少。

Kryo序列化机制,一旦启用以后,会生效的几个地方:

1、算子函数中使用到的外部变量
2、持久化RDD时进行序列化,StorageLevel.MEMORY_ONLY_SER
3、shuffle

1、算子函数中使用到的外部变量,使用Kryo以后:优化网络传输的性能,可以优化集群中内存的占用和消耗
2、持久化RDD,优化内存的占用和消耗;持久化RDD占用的内存越少,task执行的时候,创建的对象,就不至于频繁的占满内存,频繁发生GC。
3、shuffle:可以优化网络传输的性能
SparkConf.set(“spark.serializer”, “org.apache.spark.serializer.KryoSerializer”)

首先第一步,在SparkConf中设置一个属性,spark.serializer,org.apache.spark.serializer.KryoSerializer类;

Kryo之所以没有被作为默认的序列化类库的原因,就要出现了:主要是因为Kryo要求,如果要达到它的最佳性能的话,那么就一定要注册你自定义的类(比如,你的算子函数中使用到了外部自定义类型的对象变量,这时,就要求必须注册你的类,否则Kryo达不到最佳性能)。

第二步,注册你使用到的,需要通过Kryo序列化的,一些自定义类,SparkConf.registerKryoClasses()

项目中的使用:
.set(“spark.serializer”, “org.apache.spark.serializer.KryoSerializer”)
.registerKryoClasses(new Class[]{CategorySortKey.class})

使用fastutil优化数据格式
fastutil是扩展了Java标准集合框架(Map、List、Set;HashMap、ArrayList、HashSet)的类库,提供了特殊类型的map、set、list和queue;
fastutil能够提供更小的内存占用,更快的存取速度;我们使用fastutil提供的集合类,来替代自己平时使用的JDK的原生的Map、List、Set,好处在于,fastutil集合类,可以减小内存的占用,并且在进行集合的遍历、根据索引(或者key)获取元素的值和设置元素的值的时候,提供更快的存取速度;
fastutil也提供了64位的array、set和list,以及高性能快速的,以及实用的IO类,来处理二进制和文本类型的文件;
fastutil最新版本要求Java 7以及以上版本;

fastutil的每一种集合类型,都实现了对应的Java中的标准接口(比如fastutil的map,实现了Java的Map接口),因此可以直接放入已有系统的任何代码中。
fastutil还提供了一些JDK标准类库中没有的额外功能(比如双向迭代器)。

fastutil除了对象和原始类型为元素的集合,fastutil也提供引用类型的支持,但是对引用类型是使用等于号(=)进行比较的,而不是equals()方法。

fastutil尽量提供了在任何场景下都是速度最快的集合类库。

1、如果算子函数使用了外部变量;那么
第一,你可以使用Broadcast广播变量优化;
第二,可以使用Kryo序列化类库,提升序列化性能和效率;
第三,如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量,首先从源头上就减少内存的占用,通过广播变量进一步减少内存占用,再通过Kryo序列化类库进一步减少内存占用。

2、在你的算子函数里,也就是task要执行的计算逻辑里面,如果有逻辑中,出现,要创建比较大的Map、List等集合,可能会占用较大的内存空间,而且可能涉及到消耗性能的遍历、存取等集合操作;那么此时,可以考虑将这些集合类型使用fastutil类库重写,使用了fastutil集合类以后,就可以在一定程度上,减少task创建出来的集合类型的内存占用。避免executor内存频繁占满,频繁唤起GC,导致性能下降。

基本都是类似于IntList的格式,前缀就是集合的元素类型;特殊的就是Map,Int2IntMap,代表了key-value映射的元素类型。除此之外,刚才也看到了,还支持object、reference。

调节数据本地化等待时长
PROCESS_LOCAL:进程本地化,代码和数据在同一个进程中,也就是在同一个executor中;计算数据的task由executor执行,数据在executor的BlockManager中;性能最好
NODE_LOCAL:节点本地化,代码和数据在同一个节点中;比如说,数据作为一个HDFS block块,就在节点上,而task在节点上某个executor中运行;或者是,数据和task在一个节点上的不同executor中;数据需要在进程间进行传输
NO_PREF:对于task来说,数据从哪里获取都一样,没有好坏之分
RACK_LOCAL:机架本地化,数据和task在一个机架的两个节点上;数据需要通过网络在节点之间进行传输
ANY:数据和task可能在集群中的任何地方,而且不在一个机架中,性能最差

spark.locality.wait,默认是3s

Spark在Driver上,对Application的每一个stage的task,进行分配之前,都会计算出每个task要计算的是哪个分片数据,RDD的某个partition;Spark的task分配算法,优先,会希望每个task正好分配到它要计算的数据所在的节点,这样的话,就不用在网络间传输数据;

但是呢,通常来说,有时,事与愿违,可能task没有机会分配到它的数据所在的节点,为什么呢,可能那个节点的计算资源和计算能力都满了;所以呢,这种时候,通常来说,Spark会等待一段时间,默认情况下是3s钟(不是绝对的,还有很多种情况,对不同的本地化级别,都会去等待),到最后,实在是等待不了了,就会选择一个比较差的本地化级别,比如说,将task分配到靠它要计算的数据所在节点,比较近的一个节点,然后进行计算。

但是对于第二种情况,通常来说,肯定是要发生数据传输,task会通过其所在节点的BlockManager来获取数据,BlockManager发现自己本地没有数据,会通过一个getRemote()方法,通过TransferService(网络数据传输组件)从数据所在节点的BlockManager中,获取数据,通过网络传输回task所在节点。

对于我们来说,当然不希望是类似于第二种情况的了。最好的,当然是task和数据在一个节点上,直接从本地executor的BlockManager中获取数据,纯内存,或者带一点磁盘IO;如果要通过网络传输数据的话,那么实在是,性能肯定会下降的,大量网络传输,以及磁盘IO,都是性能的杀手。

我们什么时候要调节这个参数?

观察日志,spark作业的运行日志,推荐大家在测试的时候,先用client模式,在本地就直接可以看到比较全的日志。
日志里面会显示,starting task。。。,PROCESS LOCAL、NODE LOCAL
观察大部分task的数据本地化级别

如果大多都是PROCESS_LOCAL,那就不用调节了
如果是发现,好多的级别都是NODE_LOCAL、ANY,那么最好就去调节一下数据本地化的等待时长
调节完,应该是要反复调节,每次调节完以后,再来运行,观察日志
看看大部分的task的本地化级别有没有提升;看看,整个spark作业的运行时间有没有缩短

你别本末倒置,本地化级别倒是提升了,但是因为大量的等待时长,spark作业的运行时间反而增加了,那就还是不要调节了

怎么调节?

spark.locality.wait,默认是3s;6s,10s

默认情况下,下面3个的等待时长,都是跟上面那个是一样的,都是3s
spark.locality.wait.process
spark.locality.wait.node
spark.locality.wait.rack

new SparkConf()
.set(“spark.locality.wait”, “10”)

1.10.2.JVM调优
JVM调优之原理概述以及降低cache操作的内存占比
理论基础:

spark是用scala开发的。大家不要以为scala就跟java一点关系都没有了,这是一个很常见的错误。

spark的scala代码调用了很多java api。scala也是运行在java虚拟机中的。spark是运行在java虚拟机中的。

java虚拟机可能会产生什么样的问题:内存不足??!!

我们的RDD的缓存、task运行定义的算子函数,可能会创建很多对象。都可能会占用大量内存,没搞好的话,可能导致JVM出问题。

1、常规性能调优:分配资源、并行度。。。等

2、JVM调优(Java虚拟机):JVM相关的参数,通常情况下,如果你的硬件配置、基础的JVM的配置,都ok的话,JVM通常不会造成太严重的性能问题;反而更多的是,在troubleshooting中,JVM占了很重要的地位;JVM造成线上的spark作业的运行报错,甚至失败(比如OOM)。

3、shuffle调优(相当重要):spark在执行groupByKey、reduceByKey等操作时的,shuffle环节的调优。这个很重要。shuffle调优,其实对spark作业的性能的影响,是相当之高!!!经验:在spark作业的运行过程中,只要一牵扯到有shuffle的操作,基本上shuffle操作的性能消耗,要占到整个spark作业的50%~90%。10%用来运行map等操作,90%耗费在两个shuffle操作。groupByKey、countByKey。

4、spark操作调优(spark算子调优,比较重要):groupByKey,countByKey或aggregateByKey来重构实现。有些算子的性能,是比其他一些算子的性能要高的。foreachPartition替代foreach。如果一旦遇到合适的情况,效果还是不错的。

1、分配资源、并行度、RDD架构与缓存
2、shuffle调优
3、spark算子调优
4、JVM调优、广播大变量。。。

每一次放对象的时候,都是放入eden区域,和其中一个survivor区域;另外一个survivor区域是空闲的。

当eden区域和一个survivor区域放满了以后(spark运行过程中,产生的对象实在太多了),就会触发minor gc,小型垃圾回收。把不再使用的对象,从内存中清空,给后面新创建的对象腾出来点儿地方。

清理掉了不再使用的对象之后,那么也会将存活下来的对象(还要继续使用的),放入之前空闲的那一个survivor区域中。这里可能会出现一个问题。默认eden、survior1和survivor2的内存占比是8:1:1。问题是,如果存活下来的对象是1.5,一个survivor区域放不下。此时就可能通过JVM的担保机制(不同JVM版本可能对应的行为),将多余的对象,直接放入老年代了。

如果你的JVM内存不够大的话,可能导致频繁的年轻代内存满溢,频繁的进行minor gc。频繁的minor gc会导致短时间内,有些存活的对象,多次垃圾回收都没有回收掉。会导致这种短声明周期(其实不一定是要长期使用的)对象,年龄过大,垃圾回收次数太多还没有回收到,跑到老年代。

老年代中,可能会因为内存不足,囤积一大堆,短生命周期的,本来应该在年轻代中的,可能马上就要被回收掉的对象。此时,可能导致老年代频繁满溢。频繁进行full gc(全局/全面垃圾回收)。full gc就会去回收老年代中的对象。full gc由于这个算法的设计,是针对的是,老年代中的对象数量很少,满溢进行full gc的频率应该很少,因此采取了不太复杂,但是耗费性能和时间的垃圾回收算法。full gc很慢。

full gc / minor gc,无论是快,还是慢,都会导致jvm的工作线程停止工作,stop the world。简而言之,就是说,gc的时候,spark停止工作了。等着垃圾回收结束。

内存不充足的时候,问题:
1、频繁minor gc,也会导致频繁spark停止工作
2、老年代囤积大量活跃对象(短生命周期的对象),导致频繁full gc,full gc时间很长,短则数十秒,长则数分钟,甚至数小时。可能导致spark长时间停止工作。
3、严重影响咱们的spark的性能和运行的速度。

降低cache操作的内存占比

spark中,堆内存又被划分成了两块儿,一块儿是专门用来给RDD的cache、persist操作进行RDD数据缓存用的;另外一块儿,就是我们刚才所说的,用来给spark算子函数的运行使用的,存放函数中自己创建的对象。

默认情况下,给RDD cache操作的内存占比,是0.6,60%的内存都给了cache操作了。但是问题是,如果某些情况下,cache不是那么的紧张,问题在于task算子函数中创建的对象过多,然后内存又不太大,导致了频繁的minor gc,甚至频繁full gc,导致spark频繁的停止工作。性能影响会很大。

针对上述这种情况,大家可以在之前我们讲过的那个spark ui。yarn去运行的话,那么就通过yarn的界面,去查看你的spark作业的运行统计,很简单,大家一层一层点击进去就好。可以看到每个stage的运行情况,包括每个task的运行时间、gc时间等等。如果发现gc太频繁,时间太长。此时就可以适当调价这个比例。

降低cache操作的内存占比,大不了用persist操作,选择将一部分缓存的RDD数据写入磁盘,或者序列化方式,配合Kryo序列化类,减少RDD缓存的内存占用;降低cache操作内存占比;对应的,算子函数的内存占比就提升了。这个时候,可能,就可以减少minor gc的频率,同时减少full gc的频率。对性能的提升是有一定的帮助的。

一句话,让task执行算子函数时,有更多的内存可以使用。

spark.storage.memoryFraction,0.6 -> 0.5 -> 0.4 -> 0.2

executor堆外内存

有时候,如果你的spark作业处理的数据量特别特别大,几亿数据量;然后spark作业一运行,时不时的报错,shuffle file cannot find,executor、task lost,out of memory(内存溢出);

可能是说executor的堆外内存不太够用,导致executor在运行的过程中,可能会内存溢出;然后可能导致后续的stage的task在运行的时候,可能要从一些executor中去拉取shuffle map output文件,但是executor可能已经挂掉了,关联的block manager也没有了;所以可能会报shuffle output file not found;resubmitting task;executor lost;spark作业彻底崩溃。

上述情况下,就可以去考虑调节一下executor的堆外内存。也许就可以避免报错;此外,有时,堆外内存调节的比较大的时候,对于性能来说,也会带来一定的提升。

–conf spark.yarn.executor.memoryOverhead=2048

spark-submit脚本里面,去用–conf的方式,去添加配置;一定要注意!!!切记,不是在你的spark作业代码中,用new SparkConf().set()这种方式去设置,不要这样去设置,是没有用的!一定要在spark-submit脚本中去设置。

spark.yarn.executor.memoryOverhead(看名字,顾名思义,针对的是基于yarn的提交模式)

默认情况下,这个堆外内存上限大概是300多M;后来我们通常项目中,真正处理大数据的时候,这里都会出现问题,导致spark作业反复崩溃,无法运行;此时就会去调节这个参数,到至少1G(1024M),甚至说2G、4G

通常这个参数调节上去以后,就会避免掉某些JVM OOM的异常问题,同时呢,会让整体spark作业的性能,得到较大的提升。

此时呢,就会没有响应,无法建立网络连接;会卡住;ok,spark默认的网络连接的超时时长,是60s;如果卡住60s都无法建立连接的话,那么就宣告失败了。

碰到一种情况,偶尔,偶尔,偶尔!!!没有规律!!!某某file。一串file id。uuid(dsfsfd-2342vs–sdf–sdfsd)。not found。file lost。

这种情况下,很有可能是有那份数据的executor在jvm gc。所以拉取数据的时候,建立不了连接。然后超过默认60s以后,直接宣告失败。

报错几次,几次都拉取不到数据的话,可能会导致spark作业的崩溃。也可能会导致DAGScheduler,反复提交几次stage。TaskScheduler,反复提交几次task。大大延长我们的spark作业的运行时间。

可以考虑调节连接的超时时长。

–conf spark.core.connection.ack.wait.timeout=300

spark-submit脚本,切记,不是在new SparkConf().set()这种方式来设置的。

spark.core.connection.ack.wait.timeout(spark core,connection,连接,ack,wait timeout,建立不上连接的时候,超时等待时长)

调节这个值比较大以后,通常来说,可以避免部分的偶尔出现的某某文件拉取失败,某某文件lost掉了。。。

为什么在这里讲这两个参数呢?

因为比较实用,在真正处理大数据(不是几千万数据量、几百万数据量),几亿,几十亿,几百亿的时候。很容易碰到executor堆外内存,以及gc引起的连接超时的问题。file not found,executor lost,task lost。

调节上面两个参数,还是很有帮助的。

/usr/local/spark/bin/spark-submit
–class com.ibeifeng.sparkstudy.WordCount
–num-executors 80
–driver-memory 6g
–executor-memory 6g
–executor-cores 3
–master yarn-cluster
–queue root.default
–conf spark.yarn.executor.memoryOverhead=2048
–conf spark.core.connection.ack.wait.timeout=300
/usr/local/spark/spark.jar
${1}

1.10.3.Shuffle调优
Shuffle原理概述
什么样的情况下,会发生shuffle?

在spark中,主要是以下几个算子:groupByKey、reduceByKey、countByKey、join,等等。

什么是shuffle?

groupByKey,要把分布在集群各个节点上的数据中的同一个key,对应的values,都给集中到一块儿,集中到集群中同一个节点上,更严密一点说,就是集中到一个节点的一个executor的一个task中。

然后呢,集中一个key对应的values之后,才能交给我们来进行处理,;reduceByKey,算子函数去对values集合进行reduce操作,最后变成一个value;countByKey,需要在一个task中,获取到一个key对应的所有的value,然后进行计数,统计总共有多少个value;join,RDD,RDD,只要是两个RDD中,key相同对应的2个value,都能到一个节点的executor的task中,给我们进行处理。

shuffle前半部分的task在写入数据到磁盘文件之前,都会先写入一个一个的内存缓冲,内存缓冲满溢之后,再spill溢写到磁盘文件中。

shuffle,一定是分为两个stage来完成的。因为这其实是个逆向的过程,不是stage决定shuffle,是shuffle决定stage。

reduceByKey(+),在某个action触发job的时候,DAGScheduler,会负责划分job为多个stage。划分的依据,就是,如果发现有会触发shuffle操作的算子,比如reduceByKey,就将这个操作的前半部分,以及之前所有的RDD和transformation操作,划分为一个stage;shuffle操作的后半部分,以及后面的,直到action为止的RDD和transformation操作,划分为另外一个stage。

合并map端输出文件
new SparkConf().set(“spark.shuffle.consolidateFiles”, “true”)

第一个stage,每个task,都会给第二个stage的每个task创建一份map端的输出文件

第二个stage,每个task,会到各个节点上面去,拉取第一个stage每个task输出的,属于自己的那一份文件。

开启shuffle map端输出文件合并的机制;默认情况下,是不开启的,就是会发生如上所述的大量map端输出文件的操作,严重影响性能。

shuffle中的写磁盘的操作,基本上就是shuffle中性能消耗最为严重的部分。

通过上面的分析,一个普通的生产环境的spark job的一个shuffle环节,会写入磁盘100万个文件。

磁盘IO对性能和spark作业执行速度的影响,是极其惊人和吓人的。

基本上,spark作业的性能,都消耗在shuffle中了,虽然不只是shuffle的map端输出文件这一个部分,但是这里也是非常大的一个性能消耗点。

问题来了:默认的这种shuffle行为,对性能有什么样的恶劣影响呢?

实际生产环境的条件:
100个节点(每个节点一个executor):100个executor
每个executor:2个cpu core
总共1000个task:每个executor平均10个task

每个节点,10个task,每个节点会输出多少份map端文件?10 * 1000=1万个文件

总共有多少份map端输出文件?100 * 10000 = 100万。

开启了map端输出文件合并机制之后,生产环境上的例子,会有什么样的变化?

实际生产环境的条件:
100个节点(每个节点一个executor):100个executor
每个executor:2个cpu core
总共1000个task:每个executor平均10个task

每个节点,2个cpu core,有多少份输出文件呢?2 * 1000 = 2000个
总共100个节点,总共创建多少份输出文件呢?100 * 2000 = 20万个文件

相比较开启合并机制之前的情况,100万个

map端输出文件,在生产环境中,立减5倍!

合并map端输出文件,对咱们的spark的性能有哪些方面的影响呢?

1、map task写入磁盘文件的IO,减少:100万文件 -> 20万文件
2、第二个stage,原本要拉取第一个stage的task数量份文件,1000个task,第二个stage的每个task,都要拉取1000份文件,走网络传输;合并以后,100个节点,每个节点2个cpu core,第二个stage的每个task,主要拉取100 * 2 = 200个文件即可;网络传输的性能消耗是不是也大大减少

分享一下,实际在生产环境中,使用了spark.shuffle.consolidateFiles机制以后,实际的性能调优的效果:对于上述的这种生产环境的配置,性能的提升,还是相当的客观的。spark作业,5个小时 -> 2~3个小时。

大家不要小看这个map端输出文件合并机制。实际上,在数据量比较大,你自己本身做了前面的性能调优,executor上去->cpu core上去->并行度(task数量)上去,shuffle没调优,shuffle就很糟糕了;大量的map端输出文件的产生。对性能有比较恶劣的影响。

这个时候,去开启这个机制,可以很有效的提升性能。

map端内存缓冲与reduce端内存占比
spark.shuffle.file.buffer,默认32k
spark.shuffle.memoryFraction,0.2

map端内存缓冲,reduce端内存占比;很多资料、网上视频,都会说,这两个参数,是调节shuffle性能的不二选择,很有效果的样子,实际上,不是这样的。

以实际的生产经验来说,这两个参数没有那么重要,往往来说,shuffle的性能不是因为这方面的原因导致的

但是,有一点点效果的,broadcast,数据本地化等待时长;这两个shuffle调优的小点,其实也是需要跟其他的大量的小点配合起来使用,一点一点的提升性能,最终很多个性能调优的小点的效果,汇集在一起之后,那么就会有可以看见的还算不错的性能调优的效果。

默认情况下,shuffle的map task,输出到磁盘文件的时候,统一都会先写入每个task自己关联的一个内存缓冲区。

这个缓冲区大小,默认是32kb。
每一次,当内存缓冲区满溢之后,才会进行spill操作,溢写操作,溢写到磁盘文件中去。

reduce端task,在拉取到数据之后,会用hashmap的数据格式,来对各个key对应的values进行汇聚。
针对每个key对应的values,执行我们自定义的聚合函数的代码,比如_ + _(把所有values累加起来)
reduce task,在进行汇聚、聚合等操作的时候,实际上,使用的就是自己对应的executor的内存,executor(jvm进程,堆),默认executor内存中划分给reduce task进行聚合的比例,是0.2。

问题来了,因为比例是0.2,所以,理论上,很有可能会出现,拉取过来的数据很多,那么在内存中,放不下;这个时候,默认的行为,就是说,将在内存放不下的数据,都spill(溢写)到磁盘文件中去。

调优:

调节map task内存缓冲:spark.shuffle.file.buffer,默认32k(spark 1.3.x不是这个参数,后面还有一个后缀,kb;spark 1.5.x以后,变了,就是现在这个参数)
调节reduce端聚合内存占比:spark.shuffle.memoryFraction,0.2

在实际生产环境中,我们在什么时候来调节两个参数?

看Spark UI,如果你的公司是决定采用standalone模式,那么狠简单,你的spark跑起来,会显示一个Spark UI的地址,4040的端口,进去看,依次点击进去,可以看到,你的每个stage的详情,有哪些executor,有哪些task,每个task的shuffle write和shuffle read的量,shuffle的磁盘和内存,读写的数据量;如果是用的yarn模式来提交,课程最前面,从yarn的界面进去,点击对应的application,进入Spark UI,查看详情。

如果发现shuffle 磁盘的write和read,很大。这个时候,就意味着最好调节一些shuffle的参数。进行调优。首先当然是考虑开启map端输出文件合并机制。

调节上面说的那两个参数。调节的时候的原则。spark.shuffle.file.buffer,每次扩大一倍,然后看看效果,64,128;spark.shuffle.memoryFraction,每次提高0.1,看看效果。

不能调节的太大,太大了以后过犹不及,因为内存资源是有限的,你这里调节的太大了,其他环节的内存使用就会有问题了。

调节了以后,效果?map task内存缓冲变大了,减少spill到磁盘文件的次数;reduce端聚合内存变大了,减少spill到磁盘的次数,而且减少了后面聚合读取磁盘文件的数量。

HashShuffleManager与SortShuffleManager
spark.shuffle.manager:hash、sort、tungsten-sort(自己实现内存管理)
spark.shuffle.sort.bypassMergeThreshold:200

SortShuffleManager与HashShuffleManager两点不同:

1、SortShuffleManager会对每个reduce task要处理的数据,进行排序(默认的)。

2、SortShuffleManager会避免像HashShuffleManager那样,默认就去创建多份磁盘文件。一个task,只会写入一个磁盘文件,不同reduce task的数据,用offset来划分界定。

在spark 1.5.x以后,对于shuffle manager又出来了一种新的manager,tungsten-sort(钨丝),钨丝sort shuffle manager。官网上一般说,钨丝sort shuffle manager,效果跟sort shuffle manager是差不多的。

但是,唯一的不同之处在于,钨丝manager,是使用了自己实现的一套内存管理机制,性能上有很大的提升, 而且可以避免shuffle过程中产生的大量的OOM,GC,等等内存相关的异常。

来一个总结,现在相当于把spark的shuffle的东西又多讲了一些。大家理解的更加深入了。hash、sort、tungsten-sort。如何来选择?

1、需不需要数据默认就让spark给你进行排序?就好像mapreduce,默认就是有按照key的排序。如果不需要的话,其实还是建议搭建就使用最基本的HashShuffleManager,因为最开始就是考虑的是不排序,换取高性能;

2、什么时候需要用sort shuffle manager?如果你需要你的那些数据按key排序了,那么就选择这种吧,而且要注意,reduce task的数量应该是超过200的,这样sort、merge(多个文件合并成一个)的机制,才能生效把。但是这里要注意,你一定要自己考量一下,有没有必要在shuffle的过程中,就做这个事情,毕竟对性能是有影响的。

3、如果你不需要排序,而且你希望你的每个task输出的文件最终是会合并成一份的,你自己认为可以减少性能开销;可以去调节bypassMergeThreshold这个阈值,比如你的reduce task数量是500,默认阈值是200,所以默认还是会进行sort和直接merge的;可以将阈值调节成550,不会进行sort,按照hash的做法,每个reduce task创建一份输出文件,最后合并成一份文件。(一定要提醒大家,这个参数,其实我们通常不会在生产环境里去使用,也没有经过验证说,这样的方式,到底有多少性能的提升)

4、如果你想选用sort based shuffle manager,而且你们公司的spark版本比较高,是1.5.x版本的,那么可以考虑去尝试使用tungsten-sort shuffle manager。看看性能的提升与稳定性怎么样。

总结:
1、在生产环境中,不建议大家贸然使用第三点和第四点:
2、如果你不想要你的数据在shuffle时排序,那么就自己设置一下,用hash shuffle manager。
3、如果你的确是需要你的数据在shuffle时进行排序的,那么就默认不用动,默认就是sort shuffle manager;或者是什么?如果你压根儿不care是否排序这个事儿,那么就默认让他就是sort的。调节一些其他的参数(consolidation机制)。(80%,都是用这种)

spark.shuffle.manager:hash、sort、tungsten-sort

new SparkConf().set(“spark.shuffle.manager”, “hash”)
new SparkConf().set(“spark.shuffle.manager”, “tungsten-sort”)

// 默认就是,new SparkConf().set(“spark.shuffle.manager”, “sort”)
new SparkConf().set(“spark.shuffle.sort.bypassMergeThreshold”, “550”)

1.10.4.算子调优
MapPartitions提升Map类操作性能
MapPartitions操作的优点:

如果是普通的map,比如一个partition中有1万条数据;ok,那么你的function要执行和计算1万次。

但是,使用MapPartitions操作之后,一个task仅仅会执行一次function,function一次接收所有的partition数据。只要执行一次就可以了,性能比较高。

MapPartitions的缺点:一定是有的。

如果是普通的map操作,一次function的执行就处理一条数据;那么如果内存不够用的情况下,比如处理了1千条数据了,那么这个时候内存不够了,那么就可以将已经处理完的1千条数据从内存里面垃圾回收掉,或者用其他方法,腾出空间来吧。

所以说普通的map操作通常不会导致内存的OOM异常。

但是MapPartitions操作,对于大量数据来说,比如甚至一个partition,100万数据,一次传入一个function以后,那么可能一下子内存不够,但是又没有办法去腾出内存空间来,可能就OOM,内存溢出。

什么时候比较适合用MapPartitions系列操作,就是说,数据量不是特别大的时候,都可以用这种MapPartitions系列操作,性能还是非常不错的,是有提升的。比如原来是15分钟,(曾经有一次性能调优),12分钟。10分钟->9分钟。

但是也有过出问题的经验,MapPartitions只要一用,直接OOM,内存溢出,崩溃。

在项目中,自己先去估算一下RDD的数据量,以及每个partition的量,还有自己分配给每个executor的内存资源。看看一下子内存容纳所有的partition数据,行不行。如果行,可以试一下,能跑通就好。性能肯定是有提升的。

但是试了一下以后,发现,不行,OOM了,那就放弃吧。

filter过后使用coalesce减少分区数量
默认情况下,经过了这种filter之后,RDD中的每个partition的数据量,可能都不太一样了。(原本每个partition的数据量可能是差不多的)

问题:

1、每个partition数据量变少了,但是在后面进行处理的时候,还是要跟partition数量一样数量的task,来进行处理;有点浪费task计算资源。

2、每个partition的数据量不一样,会导致后面的每个task处理每个partition的时候,每个task要处理的数据量就不同,这个时候很容易发生什么问题?数据倾斜。。。。

比如说,第二个partition的数据量才100;但是第三个partition的数据量是900;那么在后面的task处理逻辑一样的情况下,不同的task要处理的数据量可能差别达到了9倍,甚至10倍以上;同样也就导致了速度的差别在9倍,甚至10倍以上。

这样的话呢,就会导致有些task运行的速度很快;有些task运行的速度很慢。这,就是数据倾斜。

针对上述的两个问题,我们希望应该能够怎么样?

1、针对第一个问题,我们希望可以进行partition的压缩吧,因为数据量变少了,那么partition其实也完全可以对应的变少。比如原来是4个partition,现在完全可以变成2个partition。那么就只要用后面的2个task来处理即可。就不会造成task计算资源的浪费。(不必要,针对只有一点点数据的partition,还去启动一个task来计算)

2、针对第二个问题,其实解决方案跟第一个问题是一样的;也是去压缩partition,尽量让每个partition的数据量差不多。那么这样的话,后面的task分配到的partition的数据量也就差不多。不会造成有的task运行速度特别慢,有的task运行速度特别快。避免了数据倾斜的问题。

有了解决问题的思路之后,接下来,我们该怎么来做呢?实现?

coalesce算子

主要就是用于在filter操作之后,针对每个partition的数据量各不相同的情况,来压缩partition的数量。减少partition的数量,而且让每个partition的数据量都尽量均匀紧凑。

从而便于后面的task进行计算操作,在某种程度上,能够一定程度的提升性能。

使用foreachPartition优化写数据库性能
默认的foreach的性能缺陷在哪里?

首先,对于每条数据,都要单独去调用一次function,task为每个数据,都要去执行一次function函数。

如果100万条数据,(一个partition),调用100万次。性能比较差。

另外一个非常非常重要的一点

如果每个数据,你都去创建一个数据库连接的话,那么你就得创建100万次数据库连接。

但是要注意的是,数据库连接的创建和销毁,都是非常非常消耗性能的。虽然我们之前已经用了数据库连接池,只是创建了固定数量的数据库连接。

你还是得多次通过数据库连接,往数据库(MySQL)发送一条SQL语句,然后MySQL需要去执行这条SQL语句。如果有100万条数据,那么就是100万次发送SQL语句。

以上两点(数据库连接,多次发送SQL语句),都是非常消耗性能的。

用了foreachPartition算子之后,好处在哪里?

1、对于我们写的function函数,就调用一次,一次传入一个partition所有的数据

2、主要创建或者获取一个数据库连接就可以

3、只要向数据库发送一次SQL语句和多组参数即可

在实际生产环境中,清一色,都是使用foreachPartition操作;但是有个问题,跟mapPartitions操作一样,如果一个partition的数量真的特别特别大,比如真的是100万,那基本上就不太靠谱了。

一下子进来,很有可能会发生OOM,内存溢出的问题。

一组数据的对比:生产环境

一个partition大概是1千条左右
用foreach,跟用foreachPartition,性能的提升达到了2~3分钟。

使用repartition解决Spark SQL低并行度的性能问题
并行度:之前说过,并行度是自己可以调节,或者说是设置的。

1、spark.default.parallelism
2、textFile(),传入第二个参数,指定partition数量(比较少用)

咱们的项目代码中,没有设置并行度,实际上,在生产环境中,是最好自己设置一下的。官网有推荐的设置方式,你的spark-submit脚本中,会指定你的application总共要启动多少个executor,100个;每个executor多少个cpu core,2~3个;总共application,有cpu core,200个。

官方推荐,根据你的application的总cpu core数量(在spark-submit中可以指定,200个),自己手动设置spark.default.parallelism参数,指定为cpu core总数的23倍。400600个并行度。600。

承上启下

你设置的这个并行度,在哪些情况下会生效?哪些情况下,不会生效?
如果你压根儿没有使用Spark SQL(DataFrame),那么你整个spark application默认所有stage的并行度都是你设置的那个参数。(除非你使用coalesce算子缩减过partition数量)

问题来了,Spark SQL,用了。用Spark SQL的那个stage的并行度,你没法自己指定。Spark SQL自己会默认根据hive表对应的hdfs文件的block,自动设置Spark SQL查询所在的那个stage的并行度。你自己通过spark.default.parallelism参数指定的并行度,只会在没有Spark SQL的stage中生效。

比如你第一个stage,用了Spark SQL从hive表中查询出了一些数据,然后做了一些transformation操作,接着做了一个shuffle操作(groupByKey);下一个stage,在shuffle操作之后,做了一些transformation操作。hive表,对应了一个hdfs文件,有20个block;你自己设置了spark.default.parallelism参数为100。

你的第一个stage的并行度,是不受你的控制的,就只有20个task;第二个stage,才会变成你自己设置的那个并行度,100。

问题在哪里?

Spark SQL默认情况下,它的那个并行度,咱们没法设置。可能导致的问题,也许没什么问题,也许很有问题。Spark SQL所在的那个stage中,后面的那些transformation操作,可能会有非常复杂的业务逻辑,甚至说复杂的算法。如果你的Spark SQL默认把task数量设置的很少,20个,然后每个task要处理为数不少的数据量,然后还要执行特别复杂的算法。

这个时候,就会导致第一个stage的速度,特别慢。第二个stage,1000个task,刷刷刷,非常快。

解决上述Spark SQL无法设置并行度和task数量的办法,是什么呢?

repartition算子,你用Spark SQL这一步的并行度和task数量,肯定是没有办法去改变了。但是呢,可以将你用Spark SQL查询出来的RDD,使用repartition算子,去重新进行分区,此时可以分区成多个partition,比如从20个partition,分区成100个。

然后呢,从repartition以后的RDD,再往后,并行度和task数量,就会按照你预期的来了。就可以避免跟Spark SQL绑定在一个stage中的算子,只能使用少量的task去处理大量数据以及复杂的算法逻辑。

reduceByKey本地聚合介绍
reduceByKey,相较于普通的shuffle操作(比如groupByKey),它的一个特点,就是说,会进行map端的本地聚合。

对map端给下个stage每个task创建的输出文件中,写数据之前,就会进行本地的combiner操作,也就是说对每一个key,对应的values,都会执行你的算子函数() + _)
用reduceByKey对性能的提升:

1、在本地进行聚合以后,在map端的数据量就变少了,减少磁盘IO。而且可以减少磁盘空间的占用。

2、下一个stage,拉取数据的量,也就变少了。减少网络的数据传输的性能消耗。

3、在reduce端进行数据缓存的内存占用变少了。

4、reduce端,要进行聚合的数据量也变少了。

总结:

reduceByKey在什么情况下使用呢?

1、非常普通的,比如说,就是要实现类似于wordcount程序一样的,对每个key对应的值,进行某种数据公式或者算法的计算(累加、类乘)

2、对于一些类似于要对每个key进行一些字符串拼接的这种较为复杂的操作,可以自己衡量一下,其实有时,也是可以使用reduceByKey来实现的。但是不太好实现。如果真能够实现出来,对性能绝对是有帮助的。(shuffle基本上就占了整个spark作业的90%以上的性能消耗,主要能对shuffle进行一定的调优,都是有价值的)

1.11.数据倾斜解决方案
原理以及现象分析
数据倾斜
在任何大数据类的项目中,都是最棘手的性能问题,最能体现人的技术能力,最能体现RD(Research Developer,研发工程师)的技术水平。
数据倾斜 = 性能杀手
如果没有丰富的经验,或者没有受过专业的技术培训,是很难解决数据倾斜问题的

在执行shuffle操作的时候,大家都知道,我们之前讲解过shuffle的原理。是按照key,来进行values的数据的输出、拉取和聚合的。
同一个key的values,一定是分配到一个reduce task进行处理的。
多个key对应的values,总共是90万。但是问题是,可能某个key对应了88万数据,key-88万values,分配到一个task上去面去执行。
另外两个task,可能各分配到了1万数据,可能是数百个key,对应的1万条数据。
想象一下,出现数据倾斜以后的运行的情况。很糟糕!极其糟糕!无比糟糕!

第一个和第二个task,各分配到了1万数据;那么可能1万条数据,需要10分钟计算完毕;第一个和第二个task,可能同时在10分钟内都运行完了;第三个task要88万条,88 * 10 = 880分钟 = 14.5个小时;

大家看看,本来另外两个task很快就运行完毕了(10分钟),但是由于一个拖后腿的家伙,第三个task,要14.5个小时才能运行完,就导致整个spark作业,也得14.5个小时才能运行完。
导致spark作业,跑的特别特别特别特别慢!!!像老牛拉破车!
数据倾斜,一旦出现,是不是性能杀手。。。。

发生数据倾斜以后的现象:

spark数据倾斜,有两种表现:

1、你的大部分的task,都执行的特别特别快,刷刷刷,就执行完了(你要用client模式,standalone client,yarn client,本地机器主要一执行spark-submit脚本,就会开始打印log),task175 finished;剩下几个task,执行的特别特别慢,前面的task,一般1s可以执行完5个;最后发现1000个task,998,999 task,要执行1个小时,2个小时才能执行完一个task。

出现数据倾斜了

还算好的,因为虽然老牛拉破车一样,非常慢,但是至少还能跑。

2、运行的时候,其他task都刷刷刷执行完了,也没什么特别的问题;但是有的task,就是会突然间,啪,报了一个OOM,JVM Out Of Memory,内存溢出了,task failed,task lost,resubmitting task。反复执行几次都到了某个task就是跑不通,最后就挂掉。

某个task就直接OOM,那么基本上也是因为数据倾斜了,task分配的数量实在是太大了!!!所以内存放不下,然后你的task每处理一条数据,还要创建大量的对象。内存爆掉了。
出现数据倾斜了
这种就不太好了,因为你的程序如果不去解决数据倾斜的问题,压根儿就跑不出来。
作业都跑不完,还谈什么性能调优这些东西。扯淡。。。

定位原因与出现问题的位置:

根据log去定位
出现数据倾斜的原因,基本只可能是因为发生了shuffle操作,在shuffle的过程中,出现了数据倾斜的问题。因为某个,或者某些key对应的数据,远远的高于其他的key。

1、你在自己的程序里面找找,哪些地方用了会产生shuffle的算子,groupByKey、countByKey、reduceByKey、join

2、看log
log一般会报是在你的哪一行代码,导致了OOM异常;或者呢,看log,看看是执行到了第几个stage!!!
哪一个stage,task特别慢,就能够自己用肉眼去对你的spark代码进行stage的划分,就能够通过stage定位到你的代码,哪里发生了数据倾斜
去找找,代码那个地方,是哪个shuffle操作。

聚合源数据
数据倾斜的解决,跟之前讲解的性能调优,有一点异曲同工之妙。
性能调优,跟大家讲过一个道理,“重剑无锋”。性能调优,调了半天,最有效,最直接,最简单的方式,就是加资源,加并行度,注意RDD架构(复用同一个RDD,加上cache缓存);shuffle、jvm等,次要的。

数据倾斜,解决方案,第一个方案和第二个方案,一起来讲。最朴素、最简谱、最直接、最有效、最简单的,解决数据倾斜问题的方案。

第一个方案:聚合源数据
第二个方案:过滤导致倾斜的key

重剑无锋。后面的五个方案,尤其是最后4个方案,都是那种特别炫酷的方案。双重group聚合方案;sample抽样分解聚合方案;如果碰到了数据倾斜的问题。上来就先考虑考虑第一个和第二个方案,能不能做,如果能做的话,后面的5个方案,都不用去搞了。

有效。简单。直接。效果是非常之好的。彻底根除了数据倾斜的问题。

第一个方案:聚合源数据

咱们现在,做一些聚合的操作,groupByKey、reduceByKey;groupByKey,说白了,就是拿到每个key对应的values;reduceByKey,说白了,就是对每个key对应的values执行一定的计算。

现在这些操作,比如groupByKey和reduceByKey,包括之前说的join。都是在spark作业中执行的。

spark作业的数据来源,通常是哪里呢?90%的情况下,数据来源都是hive表(hdfs,大数据分布式存储系统)。hdfs上存储的大数据。hive表,hive表中的数据,通常是怎么出来的呢?有了spark以后,hive比较适合做什么事情?hive就是适合做离线的,晚上凌晨跑的,ETL(extract transform load,数据的采集、清洗、导入),hive sql,去做这些事情,从而去形成一个完整的hive中的数据仓库;说白了,数据仓库,就是一堆表。

spark作业的源表,hive表,其实通常情况下来说,也是通过某些hive etl生成的。hive etl可能是晚上凌晨在那儿跑。今天跑昨天的数九。

数据倾斜,某个key对应的80万数据,某些key对应几百条,某些key对应几十条;现在,咱们直接在生成hive表的hive etl中,对数据进行聚合。比如按key来分组,将key对应的所有的values,全部用一种特殊的格式,拼接到一个字符串里面去,比如“key=sessionid, value: action_seq=1|user_id=1|search_keyword=火锅|category_id=001;action_seq=2|user_id=1|search_keyword=涮肉|category_id=001”。

对key进行group,在spark中,拿到key=sessionid,values;hive etl中,直接对key进行了聚合。那么也就意味着,每个key就只对应一条数据。在spark中,就不需要再去执行groupByKey+map这种操作了。直接对每个key对应的values字符串,map操作,进行你需要的操作即可。key,values串。

spark中,可能对这个操作,就不需要执行shffule操作了,也就根本不可能导致数据倾斜。

或者是,对每个key在hive etl中进行聚合,对所有values聚合一下,不一定是拼接起来,可能是直接进行计算。reduceByKey,计算函数,应用在hive etl中,每个key的values。

聚合源数据方案,第二种做法

你可能没有办法对每个key,就聚合出来一条数据;

那么也可以做一个妥协;对每个key对应的数据,10万条;有好几个粒度,比如10万条里面包含了几个城市、几天、几个地区的数据,现在放粗粒度;直接就按照城市粒度,做一下聚合,几个城市,几天、几个地区粒度的数据,都给聚合起来。比如说
city_id date area_id
select … from … group by city_id

尽量去聚合,减少每个key对应的数量,也许聚合到比较粗的粒度之后,原先有10万数据量的key,现在只有1万数据量。减轻数据倾斜的现象和问题。

第二个方案:过滤导致倾斜的key

如果你能够接受某些数据,在spark作业中直接就摒弃掉,不使用。比如说,总共有100万个key。只有2个key,是数据量达到10万的。其他所有的key,对应的数量都是几十。
这个时候,你自己可以去取舍,如果业务和需求可以理解和接受的话,在你从hive表查询源数据的时候,直接在sql中用where条件,过滤掉某几个key。
那么这几个原先有大量数据,会导致数据倾斜的key,被过滤掉之后,那么在你的spark作业中,自然就不会发生数据倾斜了。

提高shuffle操作的reduce并行度
第一个和第二个方案,都不适合做。
第三个方案,提高shuffle操作的reduce并行度

将reduce task的数量,变多,就可以让每个reduce task分配到更少的数据量,这样的话,也许就可以缓解,或者甚至是基本解决掉数据倾斜的问题。

提升shuffle reduce端并行度,怎么来操作?

很简单,主要给我们所有的shuffle算子,比如groupByKey、countByKey、reduceByKey。在调用的时候,传入进去一个参数。一个数字。那个数字,就代表了那个shuffle操作的reduce端的并行度。那么在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。

这样的话,就可以让每个reduce task分配到更少的数据。基本可以缓解数据倾斜的问题。

比如说,原本某个task分配数据特别多,直接OOM,内存溢出了,程序没法运行,直接挂掉。按照log,找到发生数据倾斜的shuffle操作,给它传入一个并行度数字,这样的话,原先那个task分配到的数据,肯定会变少。就至少可以避免OOM的情况,程序至少是可以跑的。

提升shuffle reduce并行度的缺陷

治标不治本的意思,因为,它没有从根本上改变数据倾斜的本质和问题。不像第一个和第二个方案(直接避免了数据倾斜的发生)。原理没有改变,只是说,尽可能地去缓解和减轻shuffle reduce task的数据压力,以及数据倾斜的问题。

实际生产环境中的经验。
1、如果最理想的情况下,提升并行度以后,减轻了数据倾斜的问题,或者甚至可以让数据倾斜的现象忽略不计,那么就最好。就不用做其他的数据倾斜解决方案了。
2、不太理想的情况下,就是比如之前某个task运行特别慢,要5个小时,现在稍微快了一点,变成了4个小时;或者是原先运行到某个task,直接OOM,现在至少不会OOM了,但是那个task运行特别慢,要5个小时才能跑完。
那么,如果出现第二种情况的话,各位,就立即放弃第三种方案,开始去尝试和选择后面的四种方案。

使用随机key实现双重聚合
1、原理

2、使用场景
(1)groupByKey
(2)reduceByKey

比较适合使用这种方式;join,咱们通常不会这样来做,后面会讲三种,针对不同的join造成的数据倾斜的问题的解决方案。

第一轮聚合的时候,对key进行打散,将原先一样的key,变成不一样的key,相当于是将每个key分为多组;

先针对多个组,进行key的局部聚合;接着,再去除掉每个key的前缀,然后对所有的key,进行全局的聚合。

对groupByKey、reduceByKey造成的数据倾斜,有比较好的效果。

如果说,之前的第一、第二、第三种方案,都没法解决数据倾斜的问题,那么就只能依靠这一种方式了。

将reduce join转换为map join
普通的join,那么肯定是要走shuffle;那么,所以既然是走shuffle,那么普通的join,就肯定是走的是reduce join。
先将所有相同的key,对应的values,汇聚到一个task中,然后再进行join。

reduce join转换为map join,适合在什么样的情况下,可以来使用?
如果两个RDD要进行join,其中一个RDD是比较小的。一个RDD是100万数据,一个RDD是1万数据。(一个RDD是1亿数据,一个RDD是100万数据)

其中一个RDD必须是比较小的,broadcast出去那个小RDD的数据以后,就会在每个executor的block manager中都驻留一份。要确保你的内存足够存放那个小RDD中的数据

这种方式下,根本不会发生shuffle操作,肯定也不会发生数据倾斜;从根本上杜绝了join操作可能导致的数据倾斜的问题;

对于join中有数据倾斜的情况,大家尽量第一时间先考虑这种方式,效果非常好;如果某个RDD比较小的情况下。

不适合的情况:
两个RDD都比较大,那么这个时候,你去将其中一个RDD做成broadcast,就很笨拙了。很可能导致内存不足。最终导致内存溢出,程序挂掉。
而且其中某些key(或者是某个key),还发生了数据倾斜;此时可以采用最后两种方式。
对于join这种操作,不光是考虑数据倾斜的问题;即使是没有数据倾斜问题,也完全可以优先考虑,用我们讲的这种高级的reduce join转map join的技术,不要用普通的join,去通过shuffle,进行数据的join;
完全可以通过简单的map,使用map join的方式,牺牲一点内存资源;在可行的情况下,优先这么使用。
不走shuffle,直接走map,是不是性能也会高很多?这是肯定的。

sample采样倾斜key单独进行join
这个方案的实现思路,跟大家解析一下:其实关键之处在于,将发生数据倾斜的key,单独拉出来,放到一个RDD中去;就用这个原本会倾斜的key RDD跟其他RDD,单独去join一下,这个时候,key对应的数据,可能就会分散到多个task中去进行join操作。

就不至于说是,这个key跟之前其他的key混合在一个RDD中时,肯定是会导致一个key对应的所有数据,都到一个task中去,就会导致数据倾斜。

这种方案什么时候适合使用?

优先对于join,肯定是希望能够采用上一讲讲的,reduce join转换map join。两个RDD数据都比较大,那么就不要那么搞了。

针对你的RDD的数据,你可以自己把它转换成一个中间表,或者是直接用countByKey()的方式,你可以看一下这个RDD各个key对应的数据量;此时如果你发现整个RDD就一个,或者少数几个key,是对应的数据量特别多;尽量建议,比如就是一个key对应的数据量特别多。
此时可以采用咱们的这种方案,单拉出来那个最多的key;单独进行join,尽可能地将key分散到各个task上去进行join操作。

什么时候不适用呢?
如果一个RDD中,导致数据倾斜的key,特别多;那么此时,最好还是不要这样了;还是使用我们最后一个方案,终极的join数据倾斜的解决方案。

就是说,咱们单拉出来了,一个或者少数几个可能会产生数据倾斜的key,然后还可以进行更加优化的一个操作;
对于那个key,从另外一个要join的表中,也过滤出来一份数据,比如可能就只有一条数据。userid2infoRDD,一个userid key,就对应一条数据。
然后呢,采取对那个只有一条数据的RDD,进行flatMap操作,打上100个随机数,作为前缀,返回100条数据。
单独拉出来的可能产生数据倾斜的RDD,给每一条数据,都打上一个100以内的随机数,作为前缀。
再去进行join,是不是性能就更好了。肯定可以将数据进行打散,去进行join。join完以后,可以执行map操作,去将之前打上的随机数,给去掉,然后再和另外一个普通RDD join以后的结果,进行union操作。

随机数和扩容表进行join
当采用随机数和扩容表进行join解决数据倾斜的时候,就代表着,你的之前的数据倾斜的解决方案,都没法使用。
这个方案是没办法彻底解决数据倾斜的,更多的,是一种对数据倾斜的缓解。
原理,其实在上一讲,已经带出来了。

步骤:
1、选择一个RDD,要用flatMap,进行扩容,将每条数据,映射为多条数据,每个映射出来的数据,都带了一个n以内的随机数,通常来说,会选择10。
2、将另外一个RDD,做普通的map映射操作,每条数据,都打上一个10以内的随机数。
3、最后,将两个处理后的RDD,进行join操作。

局限性:
1、因为你的两个RDD都很大,所以你没有办法去将某一个RDD扩的特别大,一般咱们就是10倍。
2、如果就是10倍的话,那么数据倾斜问题,的确是只能说是缓解和减轻,不能说彻底解决。

sample采样倾斜key并单独进行join
将key,从另外一个RDD中过滤出的数据,可能只有一条,或者几条,此时,咱们可以任意进行扩容,扩成1000倍。
将从第一个RDD中拆分出来的那个倾斜key RDD,打上1000以内的一个随机数。
这种情况下,还可以配合上,提升shuffle reduce并行度,join(rdd, 1000)。通常情况下,效果还是非常不错的。
打散成100份,甚至1000份,2000份,去进行join,那么就肯定没有数据倾斜的问题了吧。

1.12.Troubleshooting
控制shuffle reduce端缓冲大小以避免OOM
map端的task是不断的输出数据的,数据量可能是很大的。

但是,其实reduce端的task,并不是等到map端task将属于自己的那份数据全部写入磁盘文件之后,再去拉取的。map端写一点数据,reduce端task就会拉取一小部分数据,立即进行后面的聚合、算子函数的应用。

每次reduece能够拉取多少数据,就由buffer来决定。因为拉取过来的数据,都是先放在buffer中的。然后才用后面的executor分配的堆内存占比(0.2),hashmap,去进行后续的聚合、函数的执行。

再来说说,reduce端缓冲大小的另外一面,关于性能调优的一面:
咱们假如说,你的Map端输出的数据量也不是特别大,然后你的整个application的资源也特别充足。200个executor、5个cpu core、10G内存。
其实可以尝试去增加这个reduce端缓冲大小的,比如从48M,变成96M。那么这样的话,每次reduce task能够拉取的数据量就很大。需要拉取的次数也就变少了。比如原先需要拉取100次,现在只要拉取50次就可以执行完了。

对网络传输性能开销的减少,以及reduce端聚合操作执行的次数的减少,都是有帮助的。

最终达到的效果,就应该是性能上的一定程度上的提升。
一定要注意,资源足够的时候,再去做这个事儿。

reduce端缓冲(buffer),可能会出什么问题?
可能是会出现,默认是48MB,也许大多数时候,reduce端task一边拉取一边计算,不一定一直都会拉满48M的数据。可能大多数时候,拉取个10M数据,就计算掉了。

大多数时候,也许不会出现什么问题。但是有的时候,map端的数据量特别大,然后写出的速度特别快。reduce端所有task,拉取的时候,全部达到自己的缓冲的最大极限值,缓冲,48M,全部填满。

这个时候,再加上你的reduce端执行的聚合函数的代码,可能会创建大量的对象。也许,一下子,内存就撑不住了,就会OOM。reduce端的内存中,就会发生内存溢出的问题。

针对上述的可能出现的问题,我们该怎么来解决呢?
这个时候,就应该减少reduce端task缓冲的大小。我宁愿多拉取几次,但是每次同时能够拉取到reduce端每个task的数量,比较少,就不容易发生OOM内存溢出的问题。(比如,可以调节成12M)

在实际生产环境中,我们都是碰到过这种问题的。这是典型的以性能换执行的原理。reduce端缓冲小了,不容易OOM了,但是,性能一定是有所下降的,你要拉取的次数就多了。就走更多的网络传输开销。

这种时候,只能采取牺牲性能的方式了,spark作业,首先,第一要义,就是一定要让它可以跑起来。分享一个经验,曾经写过一个特别复杂的spark作业,写完代码以后,半个月之内,就是跑不起来,里面各种各样的问题,需要进行troubleshooting。调节了十几个参数,其中就包括这个reduce端缓冲的大小。总算作业可以跑起来了。
然后才去考虑性能的调优。
spark.reducer.maxSizeInFlight,48
spark.reducer.maxSizeInFlight,24

JVM GC导致的shuffle文件拉取失败
有时会出现的一种情况,非常普遍,在spark的作业中;shuffle file not found。(spark作业中,非常非常常见的)而且,有的时候,它是偶尔才会出现的一种情况。有的时候,出现这种情况以后,会重新去提交stage、task。重新执行一遍,发现就好了。没有这种错误了。

log怎么看?用client模式去提交你的spark作业。比如standalone client;yarn client。一提交作业,直接可以在本地看到刷刷刷更新的log。

Shuffle
Task写文件时,通过BlockManager来管理,同时向Driver同步输出元数据的信息。Reduce的task去Driver查看要处理的数据在哪。元数据信息管理的。比如说cache 是通过BlockManager
找Executor是一个进程,每一个Executor都有一个BlockManager。找对应的BlockManager,拉取属于自己的文件

比如,executor的JVM进程,可能内存不是很够用了。那么此时可能就会执行GC。minor GC or full GC。总之一旦发生了JVM之后,就会导致executor内,所有的工作线程全部停止,比如BlockManager,基于netty的网络通信。

下一个stage的executor,可能是还没有停止掉的,task想要去上一个stage的task所在的exeuctor,去拉取属于自己的数据,结果由于对方正在gc,就导致拉取了半天没有拉取到。
就很可能会报出,shuffle file not found。但是,可能下一个stage又重新提交了stage或task以后,再执行就没有问题了,因为可能第二次就没有碰到JVM在gc了。

spark.shuffle.io.maxRetries 3

第一个参数,意思就是说,shuffle文件拉取的时候,如果没有拉取到(拉取失败),最多或重试几次(会重新拉取几次文件),默认是3次。

spark.shuffle.io.retryWait 5s

第二个参数,意思就是说,每一次重试拉取文件的时间间隔,默认是5s钟。

默认情况下,假如说第一个stage的executor正在进行漫长的full gc。第二个stage的executor尝试去拉取文件,结果没有拉取到,默认情况下,会反复重试拉取3次,每次间隔是五秒钟。最多只会等待3 * 5s = 15s。如果15s内,没有拉取到shuffle file。就会报出shuffle file not found。

针对这种情况,我们完全可以进行预备性的参数调节。增大上述两个参数的值,达到比较大的一个值,尽量保证第二个stage的task,一定能够拉取到上一个stage的输出文件。避免报shuffle file not found。然后可能会重新提交stage和task去执行。那样反而对性能也不好。

spark.shuffle.io.maxRetries 60
spark.shuffle.io.retryWait 60s

最多可以忍受1个小时没有拉取到shuffle file。只是去设置一个最大的可能的值。full gc不可能1个小时都没结束吧。
这样呢,就可以尽量避免因为gc导致的shuffle file not found,无法拉取到的问题。

解决YARN队列资源不足导致的application直接失败
现象:

如果说,你是基于yarn来提交spark。比如yarn-cluster或者yarn-client。你可以指定提交到某个hadoop队列上的。每个队列都是可以有自己的资源的。
跟大家说一个生产环境中的,给spark用的yarn资源队列的情况:500G内存,200个cpu core。
比如说,某个spark application,在spark-submit里面你自己配了,executor,80个;每个executor,4G内存;每个executor,2个cpu core。你的spark作业每次运行,大概要消耗掉320G内存,以及160个cpu core。

乍看起来,咱们的队列资源,是足够的,500G内存,280个cpu core。
首先,第一点,你的spark作业实际运行起来以后,耗费掉的资源量,可能是比你在spark-submit里面配置的,以及你预期的,是要大一些的。400G内存,190个cpu core。

那么这个时候,的确,咱们的队列资源还是有一些剩余的。但是问题是,如果你同时又提交了一个spark作业上去,一模一样的。那就可能会出问题。

第二个spark作业,又要申请320G内存+160个cpu core。结果,发现队列资源不足。。。。

此时,可能会出现两种情况:(备注,具体出现哪种情况,跟你的YARN、Hadoop的版本,你们公司的一些运维参数,以及配置、硬件、资源肯能都有关系)

1、YARN,发现资源不足时,你的spark作业,并没有hang在那里,等待资源的分配,而是直接打印一行fail的log,直接就fail掉了。
2、YARN,发现资源不足,你的spark作业,就hang在那里。一直等待之前的spark作业执行完,等待有资源分配给自己来执行。

采用如下方案:

1、在你的J2EE(我们这个项目里面,spark作业的运行,之前说过了,J2EE平台触发的,执行spark-submit脚本),限制,同时只能提交一个spark作业到yarn上去执行,确保一个spark作业的资源肯定是有的。

2、你应该采用一些简单的调度区分的方式,比如说,你有的spark作业可能是要长时间运行的,比如运行30分钟;有的spark作业,可能是短时间运行的,可能就运行2分钟。此时,都提交到一个队列上去,肯定不合适。很可能出现30分钟的作业卡住后面一大堆2分钟的作业。分队列,可以申请(跟你们的YARN、Hadoop运维的同学申请)。你自己给自己搞两个调度队列。每个队列的根据你要执行的作业的情况来设置。在你的J2EE程序里面,要判断,如果是长时间运行的作业,就干脆都提交到某一个固定的队列里面去把;如果是短时间运行的作业,就统一提交到另外一个队列里面去。这样,避免了长时间运行的作业,阻塞了短时间运行的作业。

3、你的队列里面,无论何时,只会有一个作业在里面运行。那么此时,就应该用我们之前讲过的性能调优的手段,去将每个队列能承载的最大的资源,分配给你的每一个spark作业,比如80个executor;6G的内存;3个cpu core。尽量让你的spark作业每一次运行,都达到最满的资源使用率,最快的速度,最好的性能;并行度,240个cpu core,720个task。

4、在J2EE中,通过线程池的方式(一个线程池对应一个资源队列),来实现上述我们说的方案。

解决各种序列化导致的报错
你会看到什么样的序列化导致的报错?

用client模式去提交spark作业,观察本地打印出来的log。如果出现了类似于Serializable、Serialize等等字眼,报错的log,那么恭喜大家,就碰到了序列化问题导致的报错。

虽然是报错,但是序列化报错,应该是属于比较简单的了,很好处理。

序列化报错要注意的三个点:

1、你的算子函数里面,如果使用到了外部的自定义类型的变量,那么此时,就要求你的自定义类型,必须是可序列化的。
final Teacher teacher = new Teacher(“leo”);
studentsRDD.foreach(new VoidFunction() {

public void call(Row row) throws Exception {
String teacherName = teacher.getName();

}
});
public class Teacher implements Serializable {
}

2、如果要将自定义的类型,作为RDD的元素类型,那么自定义的类型也必须是可以序列化的

JavaPairRDD teacherRDD
JavaPairRDD studentRDD
studentRDD.join(teacherRDD)
public class Teacher implements Serializable {
}
public class Student implements Serializable {
}

3、不能在上述两种情况下,去使用一些第三方的,不支持序列化的类型

Connection conn =
studentsRDD.foreach(new VoidFunction() {
public void call(Row row) throws Exception {
conn…
}
});

Connection是不支持序列化的

解决算子函数返回NULL导致的问题
在算子函数中,返回null

// return actionRDD.mapToPair(new PairFunction() {
// private static final long serialVersionUID = 1L;
// @Override
// public Tuple2 call(Row row) throws Exception {
// return new Tuple2("-999", RowFactory.createRow("-999"));
// }
// });

大家可以看到,在有些算子函数里面,是需要我们有一个返回值的。但是,有时候,我们可能对某些值,就是不想有什么返回值。我们如果直接返回NULL的话,那么可以不幸的告诉大家,是不行的,会报错的。

Scala.Math(NULL),异常

如果碰到你的确是对于某些值,不想要有返回值的话,有一个解决的办法:

1、在返回的时候,返回一些特殊的值,不要返回null,比如“-999”
2、在通过算子获取到了一个RDD之后,可以对这个RDD执行filter操作,进行数据过滤。filter内,可以对数据进行判定,如果是-999,那么就返回false,给过滤掉就可以了。
3、大家不要忘了,之前咱们讲过的那个算子调优里面的coalesce算子,在filter之后,可以使用coalesce算子压缩一下RDD的partition的数量,让各个partition的数据比较紧凑一些。也能提升一些性能。

解决yarn-client模式导致的网卡流量激增问题
yarn-client模式下,会产生什么样的问题呢?

由于咱们的driver是启动在本地机器的,而且driver是全权负责所有的任务的调度的,也就是说要跟yarn集群上运行的多个executor进行频繁的通信(中间有task的启动消息、task的执行统计消息、task的运行状态、shuffle的输出结果)。

咱们来想象一下。比如你的executor有100个,stage有10个,task有1000个。每个stage运行的时候,都有1000个task提交到executor上面去运行,平均每个executor有10个task。接下来问题来了,driver要频繁地跟executor上运行的1000个task进行通信。通信消息特别多,通信的频率特别高。运行完一个stage,接着运行下一个stage,又是频繁的通信。

在整个spark运行的生命周期内,都会频繁的去进行通信和调度。所有这一切通信和调度都是从你的本地机器上发出去的,和接收到的。这是最要人命的地方。你的本地机器,很可能在30分钟内(spark作业运行的周期内),进行频繁大量的网络通信。那么此时,你的本地机器的网络通信负载是非常非常高的。会导致你的本地机器的网卡流量会激增!!!

你的本地机器的网卡流量激增,当然不是一件好事了。因为在一些大的公司里面,对每台机器的使用情况,都是有监控的。不会允许单个机器出现耗费大量网络带宽等等这种资源的情况。运维人员。可能对公司的网络,或者其他(你的机器还是一台虚拟机),对其他机器,都会有负面和恶劣的影响。

解决的方法:

实际上解决的方法很简单,就是心里要清楚,yarn-client模式是什么情况下,可以使用的?yarn-client模式,通常咱们就只会使用在测试环境中,你写好了某个spark作业,打了一个jar包,在某台测试机器上,用yarn-client模式去提交一下。因为测试的行为是偶尔为之的,不会长时间连续提交大量的spark作业去测试。还有一点好处,yarn-client模式提交,可以在本地机器观察到详细全面的log。通过查看log,可以去解决线上报错的故障(troubleshooting)、对性能进行观察并进行性能调优。

实际上线了以后,在生产环境中,都得用yarn-cluster模式,去提交你的spark作业。

yarn-cluster模式,就跟你的本地机器引起的网卡流量激增的问题,就没有关系了。也就是说,就算有问题,也应该是yarn运维团队和基础运维团队之间的事情了。使用了yarn-cluster模式以后,就不是你的本地机器运行Driver,进行task调度了。是yarn集群中,某个节点会运行driver进程,负责task调度。

解决yarn-cluster模式的JVM内存溢出无法执行问题
总结一下yarn-client和yarn-cluster模式的不同之处:

yarn-client模式,driver运行在本地机器上的;yarn-cluster模式,driver是运行在yarn集群上某个nodemanager节点上面的。

yarn-client会导致本地机器负责spark作业的调度,所以网卡流量会激增;yarn-cluster模式就没有这个问题。

yarn-client的driver运行在本地,通常来说本地机器跟yarn集群都不会在一个机房的,所以说性能可能不是特别好;yarn-cluster模式下,driver是跟yarn集群运行在一个机房内,性能上来说,也会好一些。

实践经验,碰到的yarn-cluster的问题:

有的时候,运行一些包含了spark sql的spark作业,可能会碰到yarn-client模式下,可以正常提交运行;yarn-cluster模式下,可能是无法提交运行的,会报出JVM的PermGen(永久代)的内存溢出,OOM。

yarn-client模式下,driver是运行在本地机器上的,spark使用的JVM的PermGen的配置,是本地的spark-class文件(spark客户端是默认有配置的),JVM的永久代的大小是128M,这个是没有问题的;但是呢,在yarn-cluster模式下,driver是运行在yarn集群的某个节点上的,使用的是没有经过配置的默认设置(PermGen永久代大小),82M。

spark-sql,它的内部是要进行很复杂的SQL的语义解析、语法树的转换等等,特别复杂,在这种复杂的情况下,如果说你的sql本身特别复杂的话,很可能会比较导致性能的消耗,内存的消耗。可能对PermGen永久代的占用会比较大。

所以,此时,如果对永久代的占用需求,超过了82M的话,但是呢又在128M以内;就会出现如上所述的问题,yarn-client模式下,默认是128M,这个还能运行;如果在yarn-cluster模式下,默认是82M,就有问题了。会报出PermGen Out of Memory error log。

如何解决这种问题?

既然是JVM的PermGen永久代内存溢出,那么就是内存不够用。咱们呢,就给yarn-cluster模式下的,driver的PermGen多设置一些。

spark-submit脚本中,加入以下配置即可:
–conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"

这个就设置了driver永久代的大小,默认是128M,最大是256M。那么,这样的话,就可以基本保证你的spark作业不会出现上述的yarn-cluster模式导致的永久代内存溢出的问题。

spark sql,sql,要注意,一个问题

sql,有大量的or语句。比如where keywords=’’ or keywords=’’ or keywords=’’
当达到or语句,有成百上千的时候,此时可能就会出现一个driver端的jvm stack overflow,JVM栈内存溢出的问题

JVM栈内存溢出,基本上就是由于调用的方法层级过多,因为产生了大量的,非常深的,超出了JVM栈深度限制的,递归。递归方法。我们的猜测,spark sql,有大量or语句的时候,spark sql内部源码中,在解析sql,比如转换成语法树,或者进行执行计划的生成的时候,对or的处理是递归。or特别多的话,就会发生大量的递归。

JVM Stack Memory Overflow,栈内存溢出。

这种时候,建议不要搞那么复杂的spark sql语句。采用替代方案:将一条sql语句,拆解成多条sql语句来执行。每条sql语句,就只有100个or子句以内;一条一条SQL语句来执行。根据生产环境经验的测试,一条sql语句,100个or子句以内,是还可以的。通常情况下,不会报那个栈内存溢出。

错误的持久化方式以及checkpoint的使用
错误的持久化使用方式:

usersRDD,想要对这个RDD做一个cache,希望能够在后面多次使用这个RDD的时候,不用反复重新计算RDD;可以直接使用通过各个节点上的executor的BlockManager管理的内存 / 磁盘上的数据,避免重新反复计算RDD。
usersRDD.cache()
usersRDD.count()
usersRDD.take()
上面这种方式,不要说会不会生效了,实际上是会报错的。会报什么错误呢?会报一大堆file not found的错误。
正确的持久化使用方式:
usersRDD
usersRDD = usersRDD.cache()
val cachedUsersRDD = usersRDD.cache()
之后再去使用usersRDD,或者cachedUsersRDD,就可以了。就不会报错了。所以说,这个是咱们的持久化的正确的使用方式。
持久化,大多数时候,都是会正常工作的。但是就怕,有些时候,会出现意外。

比如说,缓存在内存中的数据,可能莫名其妙就丢失掉了。

或者说,存储在磁盘文件中的数据,莫名其妙就没了,文件被误删了。
出现上述情况的时候,接下来,如果要对这个RDD执行某些操作,可能会发现RDD的某个partition找不到了。

对消失的partition重新计算,计算完以后再缓存和使用。

有些时候,计算某个RDD,可能是极其耗时的。可能RDD之前有大量的父RDD。那么如果你要重新计算一个partition,可能要重新计算之前所有的父RDD对应的partition。

这种情况下,就可以选择对这个RDD进行checkpoint,以防万一。进行checkpoint,就是说,会将RDD的数据,持久化一份到容错的文件系统上(比如hdfs)。

在对这个RDD进行计算的时候,如果发现它的缓存数据不见了。优先就是先找一下有没有checkpoint数据(到hdfs上面去找)。如果有的话,就使用checkpoint数据了。不至于说是去重新计算。

checkpoint,其实就是可以作为是cache的一个备胎。如果cache失效了,checkpoint就可以上来使用了。

checkpoint有利有弊,利在于,提高了spark作业的可靠性,一旦发生问题,还是很可靠的,不用重新计算大量的rdd;但是弊在于,进行checkpoint操作的时候,也就是将rdd数据写入hdfs中的时候,还是会消耗性能的。

checkpoint,用性能换可靠性。

checkpoint原理:

1、在代码中,用SparkContext,设置一个checkpoint目录,可以是一个容错文件系统的目录,比如hdfs;
2、在代码中,对需要进行checkpoint的rdd,执行RDD.checkpoint();
3、RDDCheckpointData(spark内部的API),接管你的RDD,会标记为marked for checkpoint,准备进行checkpoint
4、你的job运行完之后,会调用一个finalRDD.doCheckpoint()方法,会顺着rdd lineage,回溯扫描,发现有标记为待checkpoint的rdd,就会进行二次标记,inProgressCheckpoint,正在接受checkpoint操作
5、job执行完之后,就会启动一个内部的新job,去将标记为inProgressCheckpoint的rdd的数据,都写入hdfs文件中。(备注,如果rdd之前cache过,会直接从缓存中获取数据,写入hdfs中;如果没有cache过,那么就会重新计算一遍这个rdd,再checkpoint)
6、将checkpoint过的rdd之前的依赖rdd,改成一个CheckpointRDD*,强制改变你的rdd的lineage。后面如果rdd的cache数据获取失败,直接会通过它的上游CheckpointRDD,去容错的文件系统,比如hdfs,中,获取checkpoint的数据。

1.按条件筛选session
有两问题:一要按条件筛选session,由于这个筛选的粒度是不同的,比如访问时间、功能点等,那么这个都是session粒度的,另外针对用户的基础信息进行筛选,如年龄、性别、职业。所以说筛选粒度是不统一的。

第二个问题,每天的用户行为数据量是很大的,因为用户行为表中一行就代表了用户的一个行为。

对原始的数据,进行聚合,什么粒度的聚合呢?session粒度的聚合。也就是说,用一些最基本的筛选条件,比如时间范围,从hive表中提取数据,然后呢,按照session_id这个字段进行聚合,那么聚合后的一条记录,就是一个用户的某个session在指定时间内的访问的记录,比如使用过的所有的品类id、session对应的userid关联的用户的基础信息。即对session进行分组。

聚合过后,针对sessio n粒度的数据,按照使用者指定的筛选条件,进行数据的筛选。筛选出来符合条件的用session粒度的数据。其实就是我们想要的那些session了。

2、聚合统计

spark作业是分布式的,每个spark task在执行我们的统计逻辑的时候,就需要对一个全局的变量,进行累加操作。比如代表访问时长在1s3s的session数量,初始是0,然后分布式处理所有的session,判断每个session的访问时长,如果是1s3s内的话,那么就给1s~3s内的session计数器,累加1。

那么在spark中,要实现分布式安全的累加操作,基本上只有一个最好的选择,就是Accumulator变量。但是,问题又来了,如果是基础的Accumulator变量,那么可能需要将近20个Accumulator变量,1s3s、4s6s。。。。;但是这样的话,就会导致代码中充斥了大量的Accumulator变量,导致维护变得更加复杂,在修改代码的时候,很可能会导致错误。比如说判断出一个session访问时长在4s6s,但是代码中不小心写了一个bug(由于Accumulator太多了),比如说,更新了1s3s的范围的Accumulator变量。导致统计出错。

所以,对于这个情况,那么我们就可以使用自定义Accumulator的技术,来实现复杂的分布式计算。也就是说,就用一个Accumulator,来计算所有的指标。
自定义Accumulator进行指标计算 定义一个类实现AccmulatorParam接口 实现zero addInplace addAccumulator add方法 写到mysql中

3.按时间比例随机抽取100个session
Session随机抽取:按每天的每小时的session数量, 占当天session总数的比例 ,乘以每天要抽取的session数量,计算出每小时要抽取的session数量 ,然后,在每天每小时的session中,随机抽取之前计算出来的数量的session。

这个功能的作用,是说,可以让使用者,能够对于符合条件的session,按照时间比例均匀的随机采样出100个session,然后观察每个session具体的点击流/行为。

之所以要做到按时间比例随机采用抽取,就是要做到,观察样本的公平性。
综合运用Spark的countByKey、groupByKey、mapToPair等算子

4获取具体家电类型操作量排名前3的功能点
获取符合条件的session访问过的所有家电类型
计算各类型功能点的次数

性能调优:
分配资源:提交spark作业时,用的spark-submit shell脚本,里面调整对应的参数。如配置executor的数量,配置driver的内存,executor的内存,executor的cpu core数量

调节并行度、(官方是推荐,task数量,设置成spark application总cpu core数量的2~3倍。这样设置可以让一个task运行完了以后,另一个task马上可以补上来,就尽量让cpu core不要空闲,同时也是尽量提升spark作业运行的效率和速度,提升性)

RDD重构和RDD持久化
重构:尽量去复用RDD,差不多的RDD,可以抽取称为一个共同的RDD,供后面的RDD计算时,反复使用
持久化:
公共RDD一定要实现持久化,且持久化,是可以进行序列化的。若内存充足,可以使用双副本机制,进行持久化,提高可靠性。
RDD调用persist()或者cache() 方法,并传入持久化级别 4钟
仅内存 内存和磁盘 内存和磁盘序列化 仅磁盘

广播变量:
广播,Broadcast,将大变量广播出去。而不是直接使用。
如map操作 网络传输消耗性能
广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取变量副本,并保存在本地的BlockManager中;此后这个executor上的task,都会直接使用本地的BlockManager中的副本。
executor的BlockManager除了从driver上拉取,也可能从其他节点的BlockManager上拉取变量副本,举例越近越好。

Kryo序列化机制
默认情况下,Spark内部是使用Java的序列化机制,ObjectOutputStream / ObjectInputStream,对象输入输出流机制,来进行序列化
但是缺点在于,默认的序列化机制的效率不高,序列化的速度比较慢;序列化以后的数据,占用的内存空间相对还是比较大。
Spark支持使用Kryo序列化机制。Kryo序列化机制,比默认的Java序列化机制,速度要快,序列化后的数据要更小,大概是Java序列化机制的1/10。
所以Kryo序列化优化以后,可以让网络传输的数据变少;在集群中耗费的内存资源大大减少。

当使用了序列化的持久化级别时,在将每个RDD partition序列化成一个大的字节数组时
在进行stage间的task的shuffle操作时,节点与节点之间的task会互相大量通过网络拉取和传输文件,此时,这些数据既然通过网络传输,也是可能要序列化的
注册你使用到的,需要通过Kryo序列化的,一些自定义类
首先第一步,在SparkConf中设置一个属性,spark.serializer,org.apache.spark.serializer.KryoSerializer类
第二步,注册你使用到的,需要通过Kryo序列化的,一些自定义类,SparkConf.registerKryoClasses()
项目中的使用:
.set(“spark.serializer”, “org.apache.spark.serializer.KryoSerializer”)
.registerKryoClasses(new Class[]{CategorySortKey.class})

如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量

调节数据本地化等待时长
park在Driver上,对Application的每一个stage的task,进行分配之前,都会计算出每个task要计算的是哪个分片数据,RDD的某个partition。spark的task分配算法,优先,会希望每个task正好分配到它要计算的数据所在的节点,这样的话,就不用在网络间传输数据;

PROCESS_LOCAL:进程本地化 、N ODE_LOCAL:节点本地化、 NO_PREF:对于task来说,数据从哪里获取都一样,没有好坏之分 RACK_LOCAL:机架本地化、 ANY:数据和task可能在集群中的任何地方,而且不在一个机架中,性能最差
client模式,在本地就直接可以看到比较全的日志。观察大部分task的数据本地化级别 如果大多都是PROCESS_LOCAL,那就不用调节了。
等待时间spark.locality.wait,默认是3s;6s,10s
spark.locality.wait.rack

Shuffle调优
在spark中,主要是以下几个算子会发生shuffle:groupByKey、reduceByKey、countByKey、join,等等。
比如groupByKey,它把分布在集群各个节点上的数据中的同一个key,对应的values,都给集中到一起,就是集中到一个节点的一个executor的一个task中。 然后呢,集中一个key对应的values之后,才能交给我们来进行处理,
在某个action触发job的时候,DAGScheduler,会负责划分job为多个stage。划分的依据,就是,如果发现有会触发shuffle操作的算子,比如reduceByKey,就将这个操作的前半部分,以及之前所有的RDD和transformation操作,划分为一个stage;shuffle操作的后半部分,以及后面的,直到action为止的RDD和transformation操作,划分为另外一个stage
每一个shuffle的前半部分stage的task,每个task,都会给第二个stage的每个task创建一份map端的输出文件。
shuffle的后半部分stage的task,每个task都会从各个节点上的task写的属于自己的那一份文件中,拉取key, value对。
shuffle前半部分的task在写入数据到磁盘文件之前,都会先写入一个一个的内存缓冲,内存缓冲满溢之后,再spill溢写到磁盘文件中。
shuffle中的写磁盘的操作,基本上就是shuffle中性能消耗最为严重的部分

所以可以采取合并map端输出文件的方式,可以减少写入磁盘IO,同时也能减少网络传输
new SparkConf().set(“spark.shuffle.consolidateFiles”, “true”)
开启shuffle map端输出文件合并的机制;默认情况下,是不开启的,就是会发生如上所述的大量map端输出文件的操作,严重影响性能。
另外就是调节map端内存缓冲与reduce端内存占比 spark.shuffle.file.buffer,默认32k
spark.shuffle.memoryFraction,0.2。
map task内存缓冲变大了,减少spill到磁盘文件的次数;reduce端聚合内存变大了,减少spill到磁盘的次数,而且减少了后面聚合读取磁盘文件的数量。
(进入Spark UI,查看详情。如果发现shuffle 磁盘的write和read很大)

还有就是shufflemanage是否对数据排序 1。2之前默认HashShuffleManager。之后默认SortShuffleManager
在spark 1.5.x以后,对于shuffle manager又出来了一种新的manager,tungsten-sort(钨丝),钨丝sort shuffle manager。官网上一般说,钨丝tungsten-sort,效果跟sort shuffle manager是差不多的。
但是,唯一的不同之处在于,钨丝manager,是使用了自己实现的一套内存管理机制,性能上有很大的提升, 而且可以避免shuffle过程中产生的大量的OOM,GC,等等内存相关的异常。
new SparkConf().set(“spark.shuffle.manager”, “hash”) 默认排序如不需排序就设置hash

数据倾斜:
shuffle的原理。是按照key,来进行values的数据的输出、拉取和聚合的。

在执行shuffle操作的时候,同一个key的values,一定是分配到一个reduce task进行处理的。如果某一个key对应很多数据,比如百万条数据,其它的key总共对应一万条。这会导致分配到百万条的task运行很慢。数据倾斜一旦出现堪称性能杀手

一般有两种表现:一是大部分task都执行的非常快,剩下几个执行很慢。二是大部分task执行很快,但是有的task,就是会突然间报了一个OOM,JVM Out Of Memory,内存溢出了,task failed,task lost,resubmitting task。反复执行几次都到了某个task就是跑不通,最后就挂掉。 就有可能发生了数据倾斜。

定位:在程序里面找找,哪些地方用了会产生shuffle的算子,groupByKey、countByKey、reduceByKey、join
二是看log一般会报是在你的哪一行代码,导致了OOM异常;或者呢,看log,看看是执行到了第几个stage!!

解决:①聚合源数据,过滤导致倾斜的key、
第一个方案:聚合源数据。比如按key来分组,将key对应的所有的values,全部用一种特殊的格式,拼接到一个字符串里面去。也就意味着,每个key就只对应一条数据
第二个方案:过滤导致倾斜的key
并行度设置:spark.default.parallelism,100
②提高shuffle操作reduce并行度(提高并行度即让每个reduce task分配到更少的数据,调用的时候,传入进去一个参数)
③使用随机key实现双重聚合(对于groupbykey和reducebykey有比较好的效果 第一轮进行聚合时,将key分成多组,加个随机数之后进行局部聚合。然后去除key的前缀,再对所有的key进行全局聚合。)
④reducejoin转换成mapjoin(两个rdd进行join,一个比较小,另一个比较大。将小的rdd broadcast出去。这种方式就不会发生shuffle)
⑤sample采样倾斜key进行两次join (取出部分数据,计算每个key出现的次数,排序,得到一个或多个key,可能会导致数据倾斜,用这个key单独去join一下,这时key对应的数据,就会分散到多个taks中进行join操作)
⑥采用随机数和扩容表进行join(选择一个rdd,用flatmap进行扩容,将每条数据映射成多条,带个随机数,通常是10。另一个rdd做普通map操作打上一个10以内随机数。最后将处理后的两个rdd进行join)

Troubleshooting
控制shuffle reduce端缓冲区的大小避免OOM。(Reduce端拉取过来的数据先放在buffle中,然后才用后面executor分配的堆内存占比(0.2)去进行后续聚合、函数的执行。默认48M,有时map端数据特别大,写的速度很快,拉取时全部达到最大值,48m全部填满,再加上reduce端执行的聚合函数代码会创建大量对象,一下子内存撑不住就会OOM,这时应该减小reduce端缓冲区大小,采取多拉取几次,每次同时拉取reduce端少一点数据,(调节到12m)就不容易OOM了,以性能换执行)

JVM GC导致shuffle文件拉取失败
在spark作业中,shuffle file not found这种情况很常见,(log本地yarn-client)有时出现这种情况重新执行一遍发现就好了。比如executor的jvm进程,可能内存不够用,会执行GC,minor GC 或者fullGC,不管哪种GC,发生之后,就会导致executor内,所有工作线程停止,比如blockmanager,它是基于netty的网络通信。Shuffle后部分的stage想要去上一个stage的task所在executor拉取属于自己的数据,由于正在GC就会导致很久拉取不到。
可以通过设置参数spark.shuffle.io.maxRetries 3如果拉取失败重试的次数
Spark.shuffle.io.retryWait 5s.代表每一次重试拉取文件的时间间隔默认5s。默认情况下,会反复重试拉取3次,每次间隔是五秒钟。最多只会等待15s。如果15s内,没有拉取到shuffle file。就会报出shuffle file not found。

Yarn-cluster模式jvm内存溢出无法执行问题
有时运行包含sparksql的spark作业,碰到yarn-client模式下可以正常运行,cluster模式无法运行,爆出jvm的Pergen(永久代)的OOM内存溢出。由于client模式,driver是本地机器,spark使用的jvm的Pergen配置,是本地class文件,jvm永久代大小是128m。而cluster模式,driver是运行在yarn集群某个节点上,jvm的pergen默认设置为82m。Sparksql内部要进行复杂sql语义解析语法树转换,复杂sql会导致性能消耗,对jvm的Pergen占用比较大。
解决办法:在spark-submit脚本中,加入以下配置即可:
–conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"

各种序列化导致的报错(本地log报Serializable错误。使用外部自定义类型必须可序列化、作为RDD的元素类型、不能使用第三方不支持序列化的如connection)、算子函数返回null导致的问题。(scala.math(NULL)异常,算子函数里maptopair是需要有返回值的,有时不想要,直接返回NULL的话,就会报错。可以返回特殊值如-1.然后对获取到的rdd进行filter过滤,如果是-1,就返回false过滤掉就行了)

你可能感兴趣的:(大数据之路)