- 第二十九篇 数据仓库与商务智能:技术演进与前沿趋势深度解析
随缘而动,随遇而安
数据库数据仓库大数据数据库架构数据库开发
声明:文章内容仅供参考,需仔细甄别。文中技术名称属相关方商标,仅作技术描述;代码示例为交流学习用途,部分参考开源文档(Apache2.0/GPLv3);案例数据已脱敏,技术推荐保持中立;法规解读仅供参考,请以《网络安全法》《数据安全法》官方解释为准。目录一、核心差异:技术定位与实现路径1.1核心能力矩阵二、协同关系:现代数据供应链的双引擎2.1数据价值链协同2.2典型技术栈集成三、前沿技术动态(2
- Flink启动任务
swg321321
flink大数据
Flink以本地运行作为解读例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发
- 浮点数Float概述
CoderIsArt
C++11浮点数
浮点数:概述浮点数是计算机中表示分数和极大/极小数字的一种基本方式。它们在科学计算、图形学以及其他需要高精度和大范围的领域中广泛应用。以下是浮点数相关关键概念和挑战的总结:1.什么是浮点数?浮点数是一种在计算机中表示实数(包括极大和极小的数字)的方式。它们由三部分组成:符号位:表示数字的正负。尾数(或有效数字):表示数字的有效位数。指数:决定数字的规模(或大小)。浮点数的值通过以下公式计算:值=尾
- 【工具】gdb使用详细介绍
努力努力再努力~~
linux疑难问题排查实战gdblinux问题调试
linux问题排查实战专栏,分享了作为公司专家,在解决内存、性能、各类死机等疑难问题的排查经验,认真学习可以让你在日后工作中大放光彩。前言在工作中,无论是学习代码流程还是问题的定位,GDB都显得尤为重要,多掌握一些命令可以提升我们的效率和解决问题的能力;按照我的理解,对GDB的掌握程度可以分为三种人:基础命令,大家都知道相对高阶一点的,少数人了解,掌握之后可以提升调试解决问题的效率需要结合反汇编、
- 计算机专业毕业设计题目推荐(新颖选题)本科计算机人工智能专业相关毕业设计选题大全✅
会写代码的羊
毕设选题课程设计人工智能毕业设计毕设题目毕业设计题目aiAI编程
文章目录前言最新毕设选题(建议收藏起来)本科计算机人工智能专业相关的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费功能
- AI人工智能 Agent:在赋能传统行业中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在赋能传统行业中的应用1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与发展1.1.2人工智能的三次浪潮1.1.3人工智能的现状与挑战1.2传统行业面临的困境1.2.1效率低下1.2.2成本高企1.2.3决策滞后1.3人工智能赋能传统行业的必要性1.3.1提高效率1.3.2降低成本1.3.3优化决策2.核心概念与联系2.1人工智能Agent的定义2.1.1Age
- 锥面箍接/快拆环突破!拆装效率飙升200%,终结机器人螺丝拆装时代
CodePatentMaster
机器人人工智能
颠覆性散热革新!宇树科技弹性散热架构让四足机器人稳定性提升40%核心价值杭州宇树科技通过弹性接触式散热仓盖与导流件协同设计,实现计算单元散热效率提升32%且抗冲击性能增强40%,攻克四足机器人高热工况下的核心组件易损难题[1][4]。一、技术原理深度剖析1.痛点定位:高动态场景下的散热与防护两难当前四足机器人的计算单元面临两大挑战:散热瓶颈:传统刚性固定导致接触热阻增加30%以上(见热成像对比数据
- IP归属地查询API:数字世界中的“定位神器”
api
前言在数字时代,IP地址如同网络世界的“身份证”,记录着每个设备的网络足迹。而IP归属地查询API,则是解读这张“身份证”的关键工具,它能够将一串串枯燥的数字转化为具体的地理位置信息,为各行各业提供精准的数据支持。IP归属地查询API:技术原理与应用场景IP归属地查询API的工作原理并不复杂。它通过庞大的IP地址数据库,将IP地址与地理位置信息进行匹配,从而返回查询结果。这些数据库通常由专业的网络
- RabbitMQ 与 Kafka:消息中间件的终极对比与选型指南
海上彼尚
node.jsrabbitmqkafka分布式node.js
引言在分布式系统架构中,消息中间件是异步通信的核心组件。RabbitMQ和Kafka作为两大主流技术,常被开发者拿来比较。本文深入解析两者的设计哲学、性能差异和典型场景,助你做出精准技术选型。目录引言一、核心设计差异1.定位与数据模型二、性能与架构对比1.吞吐量与延迟2.集群与扩展三、功能特性对决1.消息可靠性2.消息路由四、典型场景与选型决策1.优先选择Kafka的场景2.优先选择RabbitM
- 嵌入式硬件篇---WIFI模块
Ronin-Lotus
程序代码篇嵌入式硬件篇嵌入式硬件cWIFI
文章目录前言一、核心工作原理1.物理层(PHY)工作频段2.4GHz5GHz调制技术直接序列扩频正交频分复用高效数据编码2.协议栈架构MAC层Beacon帧4次握手3.核心工作模式二、典型应用场景1.智能家居系统远程控制环境监测视频监测2.工业物联网设备远程运维生产线监控仓储管理3.医疗设备远程诊疗医疗影像药品管理4.消费电子智能音箱游戏设备打印设备三、ESP32开发示例1.环境配置(Platfo
- “四预”驱动数字孪生水利:让智慧治水守护山河安澜
GeoSaaS
实景三维智慧城市人工智能gis大数据安全
近年来,从黄河秋汛到海河特大洪水,从珠江流域性洪灾到长江罕见骤旱,极端天气频发让水安全问题备受关注。如何实现“治水于未发”?数字孪生水利以“预报、预警、预演、预案”(四预)为核心,正在掀起一场水利治理的智慧革命。一、数字孪生水利:从物理世界到虚拟镜像的跃迁数字孪生水利并非简单的“数字建模”,而是通过高精度传感器、大数据、人工智能等技术,在虚拟空间构建与物理流域完全映射的“数字分身”,实现水情、工情
- TCP/IP协议——ARP
胡小冰
TCP/IP网络
ARP只要确定了IP地址,就可以向这个目标地址发送IP数据报。然而,在底层数据链路层,进行实际通信时确有必要了解每个IP地址所对应的MAC地址。一、ARP概要ARP是一种解决地址问题的协议。以目标IP地址为线索,用来定位下一个应该接受数据分包设备对应的MAC地址。如果目标主机不在同一个链路上时,可以通过ARP查找下一跳路由器的MAC地址。不过ARP只适用于IPv4,不能用于IPv6。IPv6中可以
- 硬件NAS将成为电子垃圾?
DeepSeek+NAS
家用NASWinNAS飞牛NAS人工智能安卓NAS
随着人工智能(AI)技术的快速发展,传统的NAS设备正面临一场深刻的变革。过去,NAS的主要功能是提供数据存储和共享服务,但在AI时代,单纯的存储功能已无法满足用户需求。未来的NAS必须集成本地AI能力,才能成为真正的AI-NAS。然而,当前市场上的NAS产品硬件配置普遍较低,无法支持本地AI的运行。因此,现有的硬件NAS在三年内可能会被淘汰,取而代之的将是集成了AI和NAS功能的家用AI服务器。
- 【DeepSeek】 全方位使用指南————简版
諰.
人工智能aiAI写作
一、平台概述DeepSeek(深度求索)是专注实现AGI的中国的人工智能公司,提供多款AI产品:智能对话(Chat)文生图(Art)代码助手(Coder)API开发接口企业定制解决方案二、注册与登录2.1账号创建访问官网https://www.deepseek.com点击右上角「注册」支持三种方式:手机号+短信验证邮箱注册(需验证邮件)第三方登录(微信/Google账号)2.2订阅计划套餐类型免费
- 共筑智慧城市新生态!YashanDB与荣科科技完成兼容互认证
科技圈快讯
oracle数据库
近日,深圳计算科学研究院的崖山数据库系统YashanDB与荣科科技股份有限公司的智慧工程移动管理平台V1.0与不动产智能管理系统V1.0成功完成了兼容性互认证,标志着双方在智慧城市建设领域实现关键突破,以国产化高性能数据库技术为核心,为工程建设与不动产管理领域提供安全可控、高效稳定的数字化解决方案。在兼容性互认证过程中,双方针对功能、性能、兼容性以及稳定性等关键指标进行了多轮严格测试,验证了Ya
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- GOT-OCR2.0:突破性端到端架构与高精度文本识别的技术创新
XianxinMao
人工智能深度学习
GOT-OCR2.0在技术上的突破与优势GOT-OCR2.0在技术上实现了对传统OCR系统的显著超越,主要体现在其采用了统一的端到端(End-to-End)架构。这一架构的创新性设计带来了多方面的提升,具体包括以下几个关键方面:1.统一的端到端架构传统OCR系统的局限:传统的OCR流程通常由多个独立的模块组成,如图像预处理、字符分割、特征提取、分类识别等。这种多步处理方式不仅增加了系统的复杂性,还
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- OpenEuler kinit报错找不到文件的解决办法
久违的太阳
其他故障处理服务器运维
客户一套华为大数据集群平台,在一台arm平台openEuler服务器上面安装完集群客户端之后,使用kinit认证出现报错Nosuchfileordirectory:最终定位是操作系统/lib64缺少ld包导致,执行下面的命令恢复:ln-sv/lib/ld-linux-aarch64.so.1/lib64/ld-linux-aarch64.so.1
- 探索 ESP32:物联网时代的全能微控制器
菜只因C
物联网
引言:从ESP8266到ESP32的进化之路在物联网(IoT)蓬勃发展的今天,嵌入式设备需要兼具高性能、低功耗和联网能力。乐鑫科技(RobinLi)推出的ESP32系列芯片,正是这一需求下的产物。自2016年发布以来,ESP32凭借其卓越的综合性能,迅速成为物联网开发者的首选平台。本文将从硬件架构、核心功能、开发生态到实际应用,全面解析这款"物联网心脏"的奥秘。一、ESP32的硬件架构解析1.1双
- Spring Boot整合SSE实现消息推送:跨域问题解决与前后端联调实战
Cloud_.
springboot后端java
摘要本文记录了一次完整的SpringBoot整合Server-SentEvents(SSE)实现实时消息推送的开发过程,重点分析前后端联调时遇到的跨域问题及解决方案。通过@CrossOrigin注解的实际应用案例,帮助开发者快速定位和解决类似问题。一、项目背景与需求开发一个实时订单推送系统,需要实现:司机端与服务端的持久化连接订单信息实时推送客户端主动关闭连接二、技术方案设计2.1技术选型技术组件
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- 2024自学手册——网络安全(黑客技术)
网安CILLE
web安全安全网络
前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航三大章节,涉及价值观、方法论、执行力、行业分类、职位解读、法
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- 人工智能之数学基础:矩阵的范数
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵算法线性代数范数
本文重点在前面课程中,我们学习了向量的范数,在矩阵中也有范数,本文来学习一下。矩阵的范数对于分析线性映射函数的特性有重要的作用。矩阵范数的本质矩阵范数是一种映射,它将一个矩阵映射到一个非负实数。矩阵的范数前面我们学习了向量的范数,只有当满足几个条件的时候,此时才可以,那么矩阵也是一样的,当满足下面的条件的时候,才可以定义||A||为矩阵A的范数矩阵范数的性质连续性矩阵范数是连续的函数。即如果矩阵序
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- 基于Wasm的边缘计算Pandas:突破端侧AI的最后一公里——让数据分析在手机、IoT设备上飞驰
Eqwaak00
Pandas人工智能wasm边缘计算pandas架构深度学习
引言:边缘计算的算力觉醒在智能家居设备每秒产生数万条传感器数据、手机App需要实时分析用户行为的今天,传统云计算模式面临高延迟、隐私风险、带宽成本三大挑战。本文将揭示如何通过WebAssembly(Wasm)+Pandas的技术组合,在边缘设备上实现零云端依赖的实时数据分析,并通过智慧工厂设备预测性维护案例,展示从理论到工程的全链路实现。一、技术架构设计1.1边缘计算范式演进mermaid:gra
- AI 大模型应用数据中心的数据清洗工具
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
1.背景介绍在人工智能大模型应用的浪潮中,数据清洗作为数据预处理的重要环节,对于提升模型性能和可靠性具有至关重要的作用。数据中心作为人工智能模型的运行环境,面临着海量数据流和多样化的数据类型,如何高效、准确地进行数据清洗,成为应用大模型的关键问题之一。本文将详细介绍AI大模型应用数据中心的数据清洗工具,包括核心概念、算法原理、具体操作步骤、应用场景等,旨在为AI大模型的实际应用提供参考。2.核心概
- AI 大模型应用数据中心的数据迁移架构
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、数据迁移、架构设计、迁移策略、性能优化、安全保障1.背景介绍随着人工智能(AI)技术的飞速发展,大规模AI模型的应用日益广泛,涵盖了自然语言处理、计算机视觉、语音识别等多个领域。这些AI模型通常需要海量的数据进行训练和推理,因此数据中心作为AI应用的基础设施,显得尤为重要。然而,随着AI模型规模的不断扩大,数据中心面临着新的挑战:数据规模庞大:AI模型的训练和推理需要海量数据
- 使用LangChain与Amazon Bedrock构建JCVD风格的Chatbot
scaFHIO
langchainpython
技术背景介绍在人工智能时代,构建一个智能化的聊天机器人不仅是一个趋势,更是提升与用户互动体验的关键之一。本文将向你展示如何使用LangChain和AmazonBedrock构建一个仿效让·克劳德·范·达美(JCVD)风格的聊天机器人。我们将借助于Anthropic提供的Claude模型,通过AmazonBedrock强大的基础设施来实现这一目标。核心原理解析LangChain作为一个强大的框架,简
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。