cellchat error:外接函数调用时不能有NA/NaN/Inf(arg1)

cellchat在运行到下面几行代码的时有时候会报错,尤其是两个样本合并的时候。

Identify signaling groups based on their functional similarity

cellchat <- computeNetSimilarityPairwise(cellchat, type = "functional")
#> Compute signaling network similarity for datasets 1 2
cellchat <- netEmbedding(cellchat, type = "functional")
#> Manifold learning of the signaling networks for datasets 1 2
cellchat <- netClustering(cellchat, type = "functional")
#> Classification learning of the signaling networks for datasets 1 2
# Visualization in 2D-space
netVisual_embeddingPairwise(cellchat, type = "functional", label.size = 3.5)
#> 2D visualization of signaling networks from datasets 1 2

报错如下,这时候是因为存在NA或无穷值。


image.png

这是一个bug,我们需要修改源码来解决。
我之前是每次用到这个函数就去运行一下修改后的源码。再回来运行这个函数。
这很麻烦且费心费神。尤其是我需要生成markdown文档前预览的时候,这么长的一段代码上下拉动也要费好长时间。
有没有好的办法呢?
当然有!就是
使用source这个函数。
我们可以把修改后的源码源码包装成一个函数,每次需要使用的使用source一下就可以了。
比如我分别把三个需要修改的函数

computeNetSimilarityPairwise
netEmbedding
netClustering

包装后命名为 functional.R 里面包含代码如下


computeNetSimilarity <- function(object, slot.name = "netP", type = c("functional","structural"), k = NULL, thresh = NULL) {
  type <- match.arg(type)
  prob = methods::slot(object, slot.name)$prob
  if (is.null(k)) {
    if (dim(prob)[3] <= 25) {
      k <- ceiling(sqrt(dim(prob)[3]))
    } else {
      k <- ceiling(sqrt(dim(prob)[3])) + 1
    }
  }
  if (!is.null(thresh)) {
    prob[prob < quantile(c(prob[prob != 0]), thresh)] <- 0
  }
  if (type == "functional") {
    # compute the functional similarity
    D_signalings <- matrix(0, nrow = dim(prob)[3], ncol = dim(prob)[3])
    S2 <- D_signalings; S3 <- D_signalings;
    for (i in 1:(dim(prob)[3]-1)) {
      for (j in (i+1):dim(prob)[3]) {
        Gi <- (prob[ , ,i] > 0)*1
        Gj <- (prob[ , ,j] > 0)*1
        S3[i,j] <- sum(Gi * Gj)/sum(Gi+Gj-Gi*Gj,na.rm=TRUE)
      }
    }
    # define the similarity matrix
    S3[is.na(S3)] <- 0; S3 <- S3 + t(S3); diag(S3) <- 1
    # S_signalings <- S1 *S2
    S_signalings <- S3
  } else if (type == "structural") {
    # compute the structure distance
    D_signalings <- matrix(0, nrow = dim(prob)[3], ncol = dim(prob)[3])
    for (i in 1:(dim(prob)[3]-1)) {
      for (j in (i+1):dim(prob)[3]) {
        Gi <- (prob[ , ,i] > 0)*1
        Gj <- (prob[ , ,j] > 0)*1
        D_signalings[i,j] <- computeNetD_structure(Gi,Gj)
      }
    }
    # define the structure similarity matrix
    D_signalings[is.infinite(D_signalings)] <- 0
    D_signalings[is.na(D_signalings)] <- 0
    D_signalings <- D_signalings + t(D_signalings)
    S_signalings <- 1-D_signalings
  }
  # smooth the similarity matrix using SNN
  SNN <- buildSNN(S_signalings, k = k, prune.SNN = 1/15)
  Similarity <- as.matrix(S_signalings*SNN)
  rownames(Similarity) <- dimnames(prob)[[3]]
  colnames(Similarity) <- dimnames(prob)[[3]]
  comparison <- "single"
  comparison.name <- paste(comparison, collapse = "-")
  if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$matrix)) {
    methods::slot(object, slot.name)$similarity[[type]]$matrix <- NULL
  }
  methods::slot(object, slot.name)$similarity[[type]]$matrix[[comparison.name]] <- Similarity
  return(object)
}
#' Compute signaling network similarity for any pair of datasets
#'
#' @param object A merged CellChat object
#' @param slot.name the slot name of object that is used to compute centrality measures of signaling networks
#' @param type "functional","structural"
#' @param comparison a numerical vector giving the datasets for comparison
#' @param k the number of nearest neighbors
#' @param thresh the fraction (0 to 0.25) of interactions to be trimmed before computing network similarity
#' @importFrom methods slot
#'
#' @return
#' @export
#'
computeNetSimilarityPairwise <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, k = NULL, thresh = NULL) {
  type <- match.arg(type)
  if (is.null(comparison)) {
    comparison <- 1:length(unique(object@meta$datasets))
  }
  cat("Compute signaling network similarity for datasets", as.character(comparison), '\n')
  comparison.name <- paste(comparison, collapse = "-")
  net <- list()
  signalingAll <- c()
  object.net.nameAll <- c()
  # 1:length(setdiff(names(methods::slot(object, slot.name)), "similarity"))
  for (i in 1:length(comparison)) {
    object.net <- methods::slot(object, slot.name)[[comparison[i]]]
    object.net.name <- names(methods::slot(object, slot.name))[comparison[i]]
    object.net.nameAll <- c(object.net.nameAll, object.net.name)
    net[[i]] = object.net$prob
    signalingAll <- c(signalingAll, paste0(dimnames(net[[i]])[[3]], "--", object.net.name))
    # signalingAll <- c(signalingAll, dimnames(net[[i]])[[3]])
  }
  names(net) <- object.net.nameAll
  net.dim <- sapply(net, dim)[3,]
  nnet <- sum(net.dim)
  position <- cumsum(net.dim); position <- c(0,position)
  if (is.null(k)) {
    if (nnet <= 25) {
      k <- ceiling(sqrt(nnet))
    } else {
      k <- ceiling(sqrt(nnet)) + 1
    }
  }
  if (!is.null(thresh)) {
    for (i in 1:length(net)) {
      neti <- net[[i]]
      neti[neti < quantile(c(neti[neti != 0]), thresh)] <- 0
      net[[i]] <- neti
    }
  }
  if (type == "functional") {
    # compute the functional similarity
    S3 <- matrix(0, nrow = nnet, ncol = nnet)
    for (i in 1:nnet) {
      for (j in 1:nnet) {
        idx.i <- which(position - i >= 0)[1]
        idx.j <- which(position - j >= 0)[1]
        net.i <- net[[idx.i-1]]
        net.j <- net[[idx.j-1]]
        Gi <- (net.i[ , ,i-position[idx.i-1]] > 0)*1
        Gj <- (net.j[ , ,j-position[idx.j-1]] > 0)*1
        S3[i,j] <- sum(Gi * Gj)/sum(Gi+Gj-Gi*Gj,na.rm=TRUE)
      }
    }
    # define the similarity matrix
    S3[is.na(S3)] <- 0;  diag(S3) <- 1
    S_signalings <- S3
  } else if (type == "structural") {
    # compute the structure distance
    D_signalings <- matrix(0, nrow = nnet, ncol = nnet)
    for (i in 1:nnet) {
      for (j in 1:nnet) {
        idx.i <- which(position - i >= 0)[1]
        idx.j <- which(position - j >= 0)[1]
        net.i <- net[[idx.i-1]]
        net.j <- net[[idx.j-1]]
        Gi <- (net.i[ , ,i-position[idx.i-1]] > 0)*1
        Gj <- (net.j[ , ,j-position[idx.j-1]] > 0)*1
        D_signalings[i,j] <- computeNetD_structure(Gi,Gj)
      }
    }
    # define the structure similarity matrix
    D_signalings[is.infinite(D_signalings)] <- 0
    D_signalings[is.na(D_signalings)] <- 0
    S_signalings <- 1-D_signalings
  }
  # smooth the similarity matrix using SNN
  SNN <- buildSNN(S_signalings, k = k, prune.SNN = 1/15)
  Similarity <- as.matrix(S_signalings*SNN)
  rownames(Similarity) <- signalingAll
  colnames(Similarity) <- rownames(Similarity)
  if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$matrix)) {
    methods::slot(object, slot.name)$similarity[[type]]$matrix <- NULL
  }
  # methods::slot(object, slot.name)$similarity[[type]]$matrix <- Similarity
  methods::slot(object, slot.name)$similarity[[type]]$matrix[[comparison.name]] <- Similarity
  return(object)
}
#' Manifold learning of the signaling networks based on their similarity
#'
#' @param object CellChat object
#' @param slot.name the slot name of object that is used to compute centrality measures of signaling networks
#' @param type "functional","structural"
#' @param comparison a numerical vector giving the datasets for comparison. No need to define for a single dataset. Default are all datasets when object is a merged object
#' @param k the number of nearest neighbors in running umap
#' @param pathway.remove a range of the number of patterns
#' @importFrom methods slot
#' @return
#' @export
#'
#' @examples
#' 
#' 
#' 
#' 
#' 
#' 
#' 
netEmbedding <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, pathway.remove = NULL, k = NULL) {
  if (object@options$mode == "single") {
    comparison <- "single"
    cat("Manifold learning of the signaling networks for a single dataset", '\n')
  } else if (object@options$mode == "merged") {
    if (is.null(comparison)) {
      comparison <- 1:length(unique(object@meta$datasets))
    }
    cat("Manifold learning of the signaling networks for datasets", as.character(comparison), '\n')
  }
  comparison.name <- paste(comparison, collapse = "-")
  Similarity <- methods::slot(object, slot.name)$similarity[[type]]$matrix[[comparison.name]]
  if (is.null(pathway.remove)) {
    pathway.remove <- rownames(Similarity)[which(colSums(Similarity) == 1)]
  }
  if (length(pathway.remove) > 0) {
    pathway.remove.idx <- which(rownames(Similarity) %in% pathway.remove)
    Similarity <- Similarity[-pathway.remove.idx, -pathway.remove.idx]
  }
  if (is.null(k)) {
    k <- ceiling(sqrt(dim(Similarity)[1])) + 1
  }
  options(warn = -1)
  # dimension reduction
  Y <- runUMAP(Similarity, min.dist = 0.3, n.neighbors = k)
  if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$dr)) {
    methods::slot(object, slot.name)$similarity[[type]]$dr <- NULL
  }
  methods::slot(object, slot.name)$similarity[[type]]$dr[[comparison.name]] <- Y
  return(object)
}
#' Classification learning of the signaling networks
#'
#' @param object CellChat object
#' @param slot.name the slot name of object that is used to compute centrality measures of signaling networks
#' @param type "functional","structural"
#' @param comparison a numerical vector giving the datasets for comparison. No need to define for a single dataset. Default are all datasets when object is a merged object
#' @param k the number of signaling groups when running kmeans
#' @param methods the methods for clustering: "kmeans" or "spectral"
#' @param do.plot whether showing the eigenspectrum for inferring number of clusters; Default will save the plot
#' @param fig.id add a unique figure id when saving the plot
#' @param do.parallel whether doing parallel when inferring the number of signaling groups when running kmeans
#' @param nCores number of workers when doing parallel
#' @param k.eigen the number of eigenvalues used when doing spectral clustering
#' @importFrom methods slot
#' @importFrom future nbrOfWorkers plan
#' @importFrom future.apply future_sapply
#' @importFrom pbapply pbsapply
#' @return
#' @export
#'
#' @examples

netClustering <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, k = NULL, methods = "kmeans", do.plot = TRUE, fig.id = NULL, do.parallel = TRUE, nCores = 4, k.eigen = NULL) {
  type <- match.arg(type)
  if (object@options$mode == "single") {
    comparison <- "single"
    cat("Classification learning of the signaling networks for a single dataset", '\n')
  } else if (object@options$mode == "merged") {
    if (is.null(comparison)) {
      comparison <- 1:length(unique(object@meta$datasets))
    }
    cat("Classification learning of the signaling networks for datasets", as.character(comparison), '\n')
  }
  comparison.name <- paste(comparison, collapse = "-")
  
  Y <- methods::slot(object, slot.name)$similarity[[type]]$dr[[comparison.name]]
  Y[is.na(Y)] <- 0
  data.use <- Y
  if (methods == "kmeans") {
    if (!is.null(k)) {
      clusters = kmeans(data.use,k,nstart=10)$cluster
    } else {
      N <- nrow(data.use)
      kRange <- seq(2,min(N-1, 10),by = 1)
      if (do.parallel) {
        future::plan("multiprocess", workers = nCores)
        options(future.globals.maxSize = 1000 * 1024^2)
      }
      my.sapply <- ifelse(
        test = future::nbrOfWorkers() == 1,
        yes = pbapply::pbsapply,
        no = future.apply::future_sapply
      )
      results = my.sapply(
        X = 1:length(kRange),
        FUN = function(x) {
          idents <- kmeans(data.use,kRange[x],nstart=10)$cluster
          clusIndex <- idents
          #adjMat0 <- as.numeric(outer(clusIndex, clusIndex, FUN = "==")) - outer(1:N, 1:N, "==")
          adjMat0 <- Matrix::Matrix(as.numeric(outer(clusIndex, clusIndex, FUN = "==")), nrow = N, ncol = N)
          return(list(adjMat = adjMat0, ncluster = length(unique(idents))))
        },
        simplify = FALSE
      )
      adjMat <- lapply(results, "[[", 1)
      CM <- Reduce('+', adjMat)/length(kRange)
      res <- computeEigengap(as.matrix(CM))
      numCluster <- res$upper_bound
      clusters = kmeans(data.use,numCluster,nstart=10)$cluster
      if (do.plot) {
        gg <- res$gg.obj
        ggsave(filename= paste0("estimationNumCluster_",fig.id,"_",type,"_dataset_",comparison.name,".pdf"), plot=gg, width = 3.5, height = 3, units = 'in', dpi = 300)
      }
    }
  } else if (methods == "spectral") {
    A <- as.matrix(data.use)
    D <- apply(A, 1, sum)
    L <- diag(D)-A                       # unnormalized version
    L <- diag(D^-0.5)%*%L%*% diag(D^-0.5) # normalized version
    evL <- eigen(L,symmetric=TRUE)  # evL$values is decreasing sorted when symmetric=TRUE
    # pick the first k first k eigenvectors (corresponding k smallest) as data points in spectral space
    plot(rev(evL$values)[1:30])
    Z <- evL$vectors[,(ncol(evL$vectors)-k.eigen+1):ncol(evL$vectors)]
    clusters = kmeans(Z,k,nstart=20)$cluster
  }
  if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$group)) {
    methods::slot(object, slot.name)$similarity[[type]]$group <- NULL
  }
  methods::slot(object, slot.name)$similarity[[type]]$group[[comparison.name]] <- clusters
  return(object)
}

这样我在这几行代码前加一句
source("functional.R")
就可以了
代码如下

source("functional.R")
cellchat <- computeNetSimilarityPairwise(cellchat, type = "functional")
#> Compute signaling network similarity for datasets 1 2
cellchat <- netEmbedding(cellchat, type = "functional")
#> Manifold learning of the signaling networks for datasets 1 2
cellchat <- netClustering(cellchat, type = "functional")
#> Classification learning of the signaling networks for datasets 1 2
# Visualization in 2D-space
netVisual_embeddingPairwise(cellchat, type = "functional", label.size = 3.5)
#> 2D visualization of signaling networks from datasets 1 2

出图如下:


image.png

你可能感兴趣的:(cellchat error:外接函数调用时不能有NA/NaN/Inf(arg1))