- 【论文精读】EfficientNet
None-D
BackBones深度学习人工智能计算机视觉算法
摘要以往的卷积网络模型通过缩放深度,宽度和图像大小的其中之一或之二来扩大网络以实现更好的结果,但这种思想下经常产生次优的精度和效率的算法。本文认为通过同时平衡网络宽度、深度、分辨率的缩放倍数来扩大卷积网络,可以达到更好的精度和效率。框架优化目标定义卷积网络层iii为:Yi=Fi(Xi)Y_i=F_i(X_i)Yi=Fi(Xi)其中FiF_iFi是卷积算子,YiY_iYi为输出张量,XiX_iXi为
- 剑指RT-DETR改进主干EfficientNet模型:重新思考卷积神经网络的模型扩展,使得RT-DETR目标检测模型高效涨点
芒果汁没有芒果
剑指RT-DETR算法改进目标检测深度学习神经网络
本篇内容:剑指RT-DETR改进主干EfficientNet模型:重新思考卷积神经网络的模型扩展,YOLO系列高效涨点CSDN芒果汁没有芒果:RT-DETR最新首发创新点改进源代码!!本博客改进源代码改进适用于RT-DETR按步骤操作运行改进后的代码即可论文地址:https://arxiv.org/pdf/1905.11946.pdfEfficientNet论文理论部分+原创最新改进RT-DETR
- 图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解
牙牙要健康
深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V2模型算法详解前言EfficientNet_V2讲解自适应正则化的渐进学习(ProgressiveLearningwithadaptiveRegularization)EfficientNet_V2的模
- 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解
牙牙要健康
图像分类深度学习轻量级网络深度学习算法分类
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解文章目录【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解前言EfficientNet_V1讲解问题辨析(ProblemFormulation)缩放尺寸(ScalingDimensions)复合缩放(CompoundScaling)Efficie
- pytorch踩坑之model.eval()和model.train()输出差距很大
ZhengHsin
问题描述:本人使用pytorch1.5版本,构建EfficientNet网络,在训练之前使用model.train()设置为训练模式。每次训练结束后进行验证集的推理测试;对于含有dropout和batchnorm层的神经网络在推理前需要用model.eval()设置dropout和batchnorm的冻结。但是对于推理结果,不同的输入,具有相同的输出;错误率很高,并且loss值也于训练时差距巨大。
- 深度学习代码源码项目90个分享
z5645654
深度学习python深度学习人工智能机器学习python
demo仓库和视频演示:银色子弹zg的个人空间-银色子弹zg个人主页-哔哩哔哩视频卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swintransformer等10多种模型目标检测一般是yolov3、yolov4、yolov5、yolox、P
- EfficientNet
pythonSuperman
图片分类
时间:2019EfficicentNet网络简介EfficientNet:RethinkingModelScalingforConvolutionalNeuralNetworkshttps://arxiv.org/abs/1905.11946,这篇论文是Google在2019年发表的文章。EfficientNet这篇论文,作者同时关于输入分辨率,网络深度,宽度对准确率的影响,在之前的文章中是单独增
- 基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统
Together_CZ
神经网络人工智能深度学习
工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类
- 基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统
Together_CZ
制造
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- 基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统
Together_CZ
制造
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- CNN架构的演变:EfficientNet 简介
新华
深度学习cnn人工智能神经网络
概述在各种卷积神经网络中,EfficientNet是其中最重要的一种。与所有前辈相比,它提供了更好的性能。EfficientNet是复合缩放和神经架构搜索(NAS)的产物。在本文中,我们将深入探讨EfficientNet的细节。什么是DenseNet?DenseNet是一种使用卷积层的深度学习架构。它是其前身ResNet(ResidualNetwork)的改进版本。残差网络通过将上一层的输出连接到
- paddle 54 从PaddleClas2.5初始化模型用于迁移学习(LeViT、ReXNet、EfficientNet等)
万里鹏程转瞬至
paddlepaddlepaddle迁移学习PaddleClas深度学习
随着PaddleClas版本代码的迭代,博主以前的一些代码在使用上出现了bug,导致无法初始化模型,具体涉及paddle42将任意paddleclas模型作为paddledetection中的backbone使用代码的使用,为此重新对最新的PaddleClas代码进行梳理,实现重新初始化PaddleClas中的模型。在迁移学习中应该初始化哪些模型可以参考如何选择出最适合的backbone模型?图像
- EfficientNet论文阅读理解
欠我的都给我吐出来
论文地址:https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1911.09070概要介绍来自GoogleBrain实验室的大作,开源代码在Github。这个网络可以均衡不同的运算量(30BFLOPS-200BFLOPS)和准确性1.png1.有效多尺度的特征复用(特征金字塔FPN)简单的多尺度特征复用,因为每层特征的分别率不同,因此其对结
- EfficientDet(EfficientNet+BiFPN)论文超详细解读(翻译+学习笔记+代码实现)
路人贾'ω'
目标检测论文目标检测计算机视觉YOLO人工智能
前言在之前我们介绍过EfficientNet(直通车:【轻量化网络系列(6)】EfficientNetV1论文超详细解读(翻译+学习笔记+代码实现)【轻量化网络系列(7)】EfficientNetV2论文超详细解读(翻译+学习笔记+代码实现))EfficientDet是继2019年推出EfficientNet模型之后,Google人工智能研究小组TanMingxing等人为进一步提高目标检测效率,
- Occupancy占据网络论文讲解与分析
CVplayer111
深度学习人工智能1024程序员节
一、MonoScene1.概要a.使用单目相机,不用深度估计和点云来实现占据网络。b.提出了一种2D-3D的一种转换方法。c.在3D-unet底部加入3DCRP来捕获长距离的一个信息。2.模型结构图像先经过一个2D的unet结构,这里论文里用的预训练的EfficientNet,然后经过一个论文里提出的FLOSP模块,从2D到3D,不过是一个多尺度的投影,再上采样concate。这里的转换模块个人感
- EfficientNetV1(pytorch)
caigou.
pytorch人工智能python
之前的研究探索的是单个因改变的影响,这篇论文采用网络搜索机制同时探索3个因素的影响。e图是同时在深度(+layer),宽度(+channel),分辨率(+h,+w)进行增加,探索影响。这是一个示意图,EfficientNet的基础模块是MBConv,MobileNetV3的基础模块。整体网络设计相关MBConv模块:注意力机制:这个和MobileNetV3有些不同,第一层全连接长度不是升维后的3*
- 基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验
Together_CZ
深度学习
工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类
- 移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试
Together_CZ
人工智能
在实际的业务场景中,经常会需要考虑到硬件部署算力的因素,往往因为一些客观成本控制的问题,在实际项目开发中选择使用模型的时候往往会倾向于选择更为轻量级的模型来完成计算,但是也并非一味地轻量化,轻量化的同时还需要保证达到所需要的精度要求,本文选取了经常使用到的六款主流的识别模型,包括:efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shuff
- python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统
Together_CZ
pythoncnn开发语言
轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》《基于轻量级卷积神经网络模型实践Fruits360果蔬识别
- Python基于深度学习机器学习卷积神经网络实现垃圾分类垃圾识别系统(GoogLeNet,Resnet,DenseNet,MobileNet,EfficientNet,Shufflent)
purple_love
深度学习机器学习python
文章目录1前言+2卷积神经网络(CNN)详解+2.1CNN架构概述+2.1.1卷积层+2.1.2池化层+2.1.3全连接层2.2CNN训练过程+2.3CNN在垃圾图片分类中的应用3代码详解+3.1导入必要的库+3.2加载数据集+3.3可视化随机样本+3.4数据预处理与生成器+3.5构建、编译和训练CNN模型+3.5.1构建CNN模型+3.5.2编译模型+3.5.3训练模型3.6结果可视化与分析+3
- Tensorrt 实现 yolov5-cls 遇到的问题
J ..
CVyolov5-clstensorrt
yolov5-6.2增加了分类训练、验证、预测和导出(所有11种格式),还提供了ImageNet预训练的YOLOv5m-cls、ResNet(18、34、50、101)和EfficientNet(b0-b3)模型.官方Git:https://github.com/ultralytics/yolov5分类模型与精度基于Tensorrtx实现yolov5cls这里就不介绍如何实现了,博主写的很详细,参
- EfficientNet模型的完整细节
小白学视觉
python人工智能java机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达导读本文介绍了一种高效的网络模型EfficientNet,并分析了EfficientNetB0至B7的网络结构之间的差异。我在一个Kaggle竞赛中翻阅notebooks,发现几乎每个人都在使用EfficientNet作为他们的主干,而我之前从未听说过这个。谷歌AI在这篇文章中:https://arxiv.org/abs/190
- 一文读懂EfficientNet
小白学视觉
python人工智能java机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达导读本文介绍了一种高效的网络模型EfficientNet,并分析了EfficientNetB0至B7的网络结构之间的差异。我在一个Kaggle竞赛中翻阅notebooks,发现几乎每个人都在使用EfficientNet作为他们的主干,而我之前从未听说过这个。谷歌AI在这篇文章中:https://arxiv.org/abs/190
- 大神 | EfficientNet模型的完整细节
小白学视觉
python人工智能java机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达作者|Vardan Agarwal来自|AI公园编译|ronghuaiyang本文仅作学术交流,如有侵权,请联系后台删除。本文介绍了一种高效的网络模型EfficientNet,并分析了EfficientNetB0至B7的网络结构之间的差异。我在一个Kaggle竞赛中翻阅notebooks,发现几乎每个人都在使用Efficient
- EfficientNet模型的细节
机器学习与AI生成创作
深度学习人工智能计算机视觉python机器学习
点击上方“机器学习与生成对抗网络”,关注"星标"获取有趣、好玩的前沿干货!文章:AI公园我在一个Kaggle竞赛中翻阅notebooks,发现几乎每个人都在使用EfficientNet作为他们的主干,而我之前从未听说过这个。谷歌AI在这篇文章中:https://arxiv.org/abs/1905.11946介绍了它,他们试图提出一种更高效的方法,就像它的名字所建议的那样,同时改善了最新的结果。一
- EfficientNet:通过模型效率彻底改变深度学习
无水先生
深度学习人工智能深度学习人工智能
一、介绍EfficientNet是深度学习领域的里程碑,代表了神经网络架构方法的范式转变。EfficientNet由GoogleResearch的MingxingTan和QuocV.Le开发,在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了EfficientNet背后的关键原理、其架构以及它对深度学习领域的影响。EfficientNet:开创了模型效率时代,计算能力与优雅相结
- YOLOv5改进,论文阅读建议
DeepQi
YOLO论文阅读深度学习cnn目标检测
"EfficientNet:RethinkingModelScalingforConvolutionalNeuralNetworks",这是一篇在2019年提出的论文,提出了一种新的CNN模型缩放方法,可以根据目标任务的复杂性自适应地缩放网络深度、宽度和分辨率,从而在不增加计算量的情况下提高模型精度。"BagofTricksforImageClassificationwithConvolution
- EfficientDet论文讲解
韩师兄_
算法目标检测论文阅读考研论文笔记
目录EfficientDet0、摘要1、整体架构1.1BackBone:EfficientNet-B01.2Neck:BiFPN特征加强提取网络1.3Head检测头1.4compoundscaling2、anchors先验框3、loss组成4、论文理解5、参考资料EfficientDet影响网络的性能(或者说规模)的三大因素:depth(layer的重复次数),width(特征图channels)
- Python在使用efficientnet_lite中出现OSError: SavedModel file does not exist at:
Edgar叶
python学习树莓派pythontensorflow深度学习
解决办法Python在使用efficientnet_lite中出现OSError:SavedModelfiledoesnotexistat:1清理临时文件夹:2指定缓存目录:3直接下载模型文件:4其他问题如果加载训练好的模型XX.h5时同样遇见上面报错,直接删除缓存模型文件即可Python在使用efficientnet_lite中出现OSError:SavedModelfiledoesnotexi
- EfficientNet实现农业病害识别(FastDeploy部署和安卓端部署)
B-B Han
深度学习androidpython人工智能深度学习分类
EfficientNet实现农业病害识别(FastDeploy部署和安卓端部署)更详细请及数据集等见aistudio原文如果对你有帮助请给我一个小小的fork一、项目简介1、项目背景:基于视觉深度学习的农业病害智能识别,旨在解决传统人眼识别病虫害的方法速度较慢、准确度较低等导致农药的滥用,破坏自然环境,为帮助农业病害提供一种解决思路。该项目使用2018年农作物病害数据集数据集训练,并完成了Fast
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。