随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
#include
#include
int main()
{
std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange",
"橙子" },
{"pear","梨"} };
std::map<std::string, std::string>::iterator it = m.begin();
while (it != m.end())
{
//....
}
return 0;
}
//int main()
//{
// int a = 0;
// int b = a;
// auto c = a;
// auto d = &a;
// auto* e = &a;
// auto& f = a;
// f++;
//
// cout << typeid(c).name() << endl;
// cout << typeid(d).name() << endl;
// cout << typeid(e).name() << endl;
// cout << typeid(f).name() << endl;
//
// return 0;
//}
std::map
易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:
#include
#include
typedef std::map<std::string, std::string> Map;
int main()
{
Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} };
Map::iterator it = m.begin();
while (it != m.end())
{
//....
}
return 0;
}
使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题
typedef char* pstring;
int main()
{
const pstring p1; // 编译成功还是失败?
const pstring* p2; // 编译成功还是失败?
return 0;
}
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的
类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义
这里需要强调一点的就是auto不能做参数 不能做返回值
// 不能做参数,不能做返回值
//void func(auto e)
//{
//
//}
//auto func(auto e)
//{
//
//}
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得
int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}
【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型
因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型
int main()
{
int x = 10;
auto a = &x;
auto* b = &x;
auto& c = x;
cout << typeid(a).name() << endl;
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
*a = 20;
*b = 30;
c = 40;
return 0;
}
下面有个引用和auto的融会贯通使用
//int main()
//{
// int a = 0;
// int b = a;
// auto c = a;
// auto d = &a;
// auto* e = &a;
// auto& f = a;
// f++;
//
// cout << typeid(c).name() << endl;
// cout << typeid(d).name() << endl;
// cout << typeid(e).name() << endl;
// cout << typeid(f).name() << endl;
//
// return 0;
//}
void TestAuto()
{
auto a = 1, b = 2;
auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}
void TestAuto()
{
int a[] = {1,2,3};
auto b[] = {4,5,6};
}
范围for的语法
在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
array[i] *= 2;
for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
cout << *p << endl;
}
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误 因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围
//int main()
//{
// int array[] = { 1, 2, 3, 4, 5 };
// for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
// array[i] *= 2;
//
// for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)
// cout << *p << endl;
//
// // 依次取数组中数组赋值给e
// // 自动判断结束,自动++往后走
// //for (int e : array)
// for (auto& e : array)
// {
// e++;
// cout << e << " ";
// }
// cout << endl;
//
// for (auto e : array)
// {
// cout << e << " ";
// }
// cout << endl;
//
// return 0;
//}
注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环
范围for的使用条件
void TestFor(int array[])
{
for(auto& e : array)
cout<< e <<endl;
}
C++98中的指针空值
在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量 不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如
void f(int)
{
cout<<"f(int)"<<endl;
}
void f(int*)
{
cout<<"f(int*)"<<endl;
}
int main()
{
f(0);
f(NULL);
f((int*)NULL);
return 0;
}
程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖
在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0
注意: