- AnythingLLM - 任何文档资源内容转换为任何LLM
小众AI
AI开源人工智能AI编程
更多AI开源软件:AI开源-小众AIhttps://www.aiinn.cn/sources一个全栈应用程序,使您能够将任何文档、资源或内容转换为任何LLM都可以在聊天期间用作参考的上下文。此应用程序允许您选择要使用的LLM或矢量数据库,并支持多用户管理和权限。AnythingLLM是一个全栈应用程序,您可以在其中使用商用现成的LLM或流行的开源LLM和vectorDB解决方案来构建一个不折不扣的
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 无人机喊话系统:空中扩音器的科技密码!
云卓SKYDROID
无人机科技人工智能云卓科技科普高科技
一、技术核心:空中声波系统的三重架构1.声源处理中枢支持双模输入:麦克风实时采集与数字音频导入搭载DSP数字信号处理器,实现动态降噪(信噪比>70dB)自适应EQ调节,针对不同场景优化频响曲线(如灾害现场增强低频穿透力)2.定向声场发生器采用相控阵扬声器技术,波束角可调范围15°-60°声压级最高达125dB(相当于喷气式飞机起飞噪音)有效投射距离300米(静风环境下)3.飞控集成平台专用减震支架
- 算法基础——蓝桥杯(python实现,实际上大多数用c++更明白易懂)(第一部分,共12个小题)
New_Teen
算法蓝桥杯python
1.成绩统计问题描述:编写一个程序,建立一个字典,每个字典包含姓名、学号、英语成绩、数学成绩和C++成绩,并通过字典操作平均分最高的学生和平均分最低的学生并且输出。输入格式:输入n+1行,第一行输入一个正整数n,表示学生数量;接下来的n行每行输入5个数据,分别表示姓名、学号、英语成绩、数学成绩和C++成绩。注意成绩有可能会有小数。输出格式:输出两行,第一行输出平均成绩最高的学生姓名。第二行输出平均
- CAN协议简介:从基础到高级应用
New_Teen
嵌入式硬件学习笔记嵌入式硬件物联网
文章目录引言一、CAN协议概述1.1基本特性1.2典型应用场景二、物理层解析2.1信号规范2.2网络拓扑三、数据链路层机制3.1帧类型对比3.2非破坏性仲裁3.3错误处理机制四、帧结构详解4.1标准数据帧结构4.2扩展帧结构五、高级特性5.1CANFD协议增强5.2报文过滤机制六、同步与定时6.1位时间组成6.2同步规则七、开发实践要点结语引言在现代工业控制和汽车电子领域,CAN(Controll
- 【C语言】动态内存管理用realloc管理更灵活
xiaofann_
Cc语言算法
realloc——动态内存空间管理更灵活为了合理使用内存,我们会对内存的大小做灵活的调整。那realloc函数就可以做到对动态开辟内存大小的调整。头文件:#includevoid*realloc(要调整的内存地址,调整之后新大小)void*realloc(void*ptr,size_tsize)注意:返回值为调整之后的内存起始位置。这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- 【LeetCode 热题 100】3. 无重复字符的最长子串 | python 【中等】
一只小白跳起来
leetcodejava算法开发语言
美美超过管解题目:3.无重复字符的最长子串给定一个字符串s,请你找出其中不含有重复字符的最长的长度。示例1:输入:s="abcabcbb"输出:3解释:因为无重复字符的最长子串是"abc",所以其长度为3。注意:考虑空字符串问题有重复之后要在重复的那个后面新建序列,减少时间,故需要列表储存(标准做法里用的集合捏)标准做法:把重复的set.remove(),a指针步进,没有重复的话,b指针一直步进怎
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- Pytest的数据驱动DDT
活跃家族
pytest服务器运维
1、ddt的语法:@pytest.mark.parametrize(“case”,case_all)是个装饰器,里面两个数据:case和cases_all意思就是:将cases_all里每个成员依次传递给case这个变量;cace注意要加引号,虽然是个变量但是要加引号后面的用例方法里的参数case都是必须要要跟这个装饰器里的case名字一致。运行结果:几条用例数据就运行几条测试用例就算前面的断言失
- 10篇R1相关的研究全面汇总,万字思考!
datawhale
原创长琴DatawhaleDatawhale干货作者:长琴,Datawhale成员本文通过10篇R1相关的研究,介绍R1后LLM的新范式。其核心就是如何进一步增强LLM的能力。本文中的相关阅读,可以在主页找到对应文章:主页地址:https://yam.gift/基本框架首先是整体的框架,如下所示。•Base+SFT•R1冷启动•LIMO(817DataSelection)•s1(1000)•Bas
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- Matlab S-Function模块简谈
Captain cool290
matlab
1.单个输出形式的m脚本文件如何编写functiony=fcn()y=u;最简单的例子:就是输出等于输入点一下标题栏:gotodiagram就可以回到模型界面;EditData可以修改数据类型2.多个输出形式的m脚本如何编写function[y1,y2]=fcn(u1,u2)y1=u1+u2;y2=u2-u1;这样就可以多个输入和输出了。mamatlab3.注意点:S-Function中的变量u是
- python构造函数
yimaoyingbi
python学习python构造函数
classEmployee:def__init__(self,name,age):self.name=nameself.__age=ageprint("您好")def__work(self):print("疫情严重,在家学习")print("年龄:{0}".format(self.__age))e=Employee("gaoqi",18)e._Employee__work()构造函数和普通函数的区
- HBuilderX的下载、安装
听海边涛声
HBuilderX
HBuilderX简称HX,是一款轻量级的、免费的IDE。它具有强大的语法提示和vue支持。访问HBuilderX的官网:https://www.dcloud.io/hbuilderx.html选择要下载的版本,我下载的是v4.08版本:将压缩包下拉以后解压到某个目录下就可以了,不需要安装过程,例如,我解压到D:\HBuilderX目录下面:双击HBuilderX.exe,就可以运行了:注意:HB
- Starrocks使用中一些总结
WYRM_GOLD
Starrocks数据库数据仓库数据库开发
1、实时写入的注意事项数据表如果是每天写入,要创建分区(推荐按天分区)。表模型选择更新模型查询的维度列,整数类型列放在前面,有利于快速的查询表分区要设置过期时间,尽可能保留最近一年的数据。总结:1、分区是为了分区内数据查询时扫描的数据量减少,提高查询效率2、更新模型比组件模型更适合实时数据的写入,使用更新模型后IO和CPU使用都会有明显的下降。3、对应上述第三项中会提高查询效率,字符的扫描没有数值
- 高云FPGA的管脚约束文件的复制
在岸上走的鱼
fpga开发嵌入式硬件硬件架构
问:Gowin里面能不能直接拷贝一个管脚约束文件进去用?答:可以直接拷贝,但是拷贝前后两个工程对应的芯片必须要是同一个芯片拷贝方法:第一步:按照被拷贝约束文件对应的芯片新建一个工程,然后将原工程文件夹“src”里面的“.cst”文件拷到新建工程的相同目录下,第二步:回到新建工程目录下,点击芯片名右击,如下图:将“.V”文件和“.cst”文件一同加入这个工程,最后综合,布局布线就可以了,注意:有时拷
- Spring Boot 3.4.0 发布:功能概览与示例
小DuDu
Javaspringbootjava
SpringBoot3.4.0带来了许多增强功能,使现代应用开发更加高效、便捷和强大。以下是最新功能的完整概述,以及一些帮助您快速入门的代码示例。1.应用程序版本管理SpringBoot引入了spring.application.version属性,方便开发者设置和访问应用程序版本。示例在application.properties中:spring.application.version=1.2.
- 实现免密登录功能鸿蒙示例代码
本文原创发布在华为开发者社区。介绍本示例基于关键资产存储服务API实现了免密登录功能。实现免密登录功能源码链接效果预览使用说明注意,设备需设置锁屏密码后才可使用免密登录功能。输入账号和密码,勾选“记住密码”,底部会出现提示弹窗,点击“登录”按钮后,点击“重新加载该页面”,会出现输入锁屏密码的弹窗,输入成功,应用自动填充账号和密码。实现思路保存账户信息通过asset.add接口保存用户信息,此处设置
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 【CSS】实现三栏布局的方式
儒rs
CSScsscss3html三栏布局前端
【CSS】实现三栏布局的方式三栏布局一般指的是页面中一共有三栏,左右两栏宽度固定,中间自适应的布局,三栏布局的具体实现如下:①利用浮动利用浮动,左右两栏设置固定大小,并设置对应方向的浮动。中间一栏设置左右两个方向的margin值。注意这种方式,中间一栏必须放到最后。.container{overflow:hidden;}.left{float:left;width:100px;background
- 暗光增强技术研究进展与产品落地综合分析(2023-2025)
AndrewHZ
深度学习新浪潮图像处理算法动态范围计算机视觉深度学习transformer暗光增强
一、引言暗光增强技术作为计算机视觉与移动影像领域的核心研究方向之一,近年来在算法创新、硬件适配及产品落地方面取得了显著进展。本文从技术研究与产业应用两个维度,系统梳理近三年(2023-2025)该领域的关键突破,并对比分析主流手机厂商的影像技术优劣势。二、暗光增强技术研究进展1.算法创新:从传统模型到深度学习(1)Retinex理论的深度结合清华与ETH联合提出的Retinexformer(202
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- H800核心性能优化技术
智能计算研究中心
其他
内容概要作为新一代AI加速卡的核心创新载体,H800通过异构计算架构与动态能效管理技术的协同设计,实现了从硬件底层到应用层的系统性优化。其技术突破聚焦于张量核心重构带来的计算密度提升、混合精度运算对资源利用率的增强,以及智能散热方案在复杂负载场景下的稳定性保障。这些创新不仅显著提升了30%以上的能效比,更通过精细化任务调度机制,解决了深度学习训练中高并发数据处理与模型参数同步的效率瓶颈。值得关注的
- 重构革命:如何通过C#代码优化实现软件的华丽转身
墨夶
C#学习资料1重构c#开发语言
在软件开发的世界里,代码的质量直接决定了项目的成败。随着业务需求的变化和技术的进步,原有的代码结构可能逐渐变得臃肿、难以维护。这时,代码重构就成为了提升系统性能、增强可读性和简化后续开发工作的关键手段。本文将深入探讨C#代码重构的最佳实践,帮助开发者掌握这一技能,在不改变外部行为的前提下对内部实现进行改进,使程序更加健壮、灵活且易于扩展。一、1.1为什么需要重构?当一个项目随着时间推移而不断增长时
- 下载码怎么使用
小小河马、
java
CSDN下载码是通过用户完成一些既定的任务而赠送给用户的。在完成一些要求的任务后,系统会送出一个下载码。用户可以使用该下载码去下载需要的资源。注意下载码是有有效期的,一旦收到了下载码请尽快使用。使用下载码只能下载不需要积分的资源,如果需要积分的资源,下载码是没有用的。博客积分是CSDN对用户努力的认可和奖励,也是衡量博客水平的重要标准。博客等级也将由博客积分唯一决定。积分规则具体如下:1、每发布一
- UniApp 从Vue2升级为Vue3需要注意哪些方面
行思理
App开发uni-appvue.jsjavascriptVue3Vue2
Vue官方已经发布了Vue3,Vue2不再维护,也在建议大家都迁移到Vue3,所以Vue2终会被淘汰。那么UniApp从Vue2升级为Vue3需要注意哪些方面:1、main.js下面请看创建应用实例Vue2与Vue3的不同:Vue2的写法://之前-Vue2importVuefrom'vue'importAppfrom'./App'Vue.config.productionTip=false//v
- 华纳云:BenchSEE测试工具怎么用?
测试
BenchSEE测试工具的使用方法可以按照以下步骤进行:BenchSEE简介:BenchSEE是中国标准化研究院开发的一款服务器产品能效测试基准软件。它支持多种服务器类型和硬件平台,并兼容主流操作系统。准备工作:确保测试系统包括控制端(可以是PC或服务器,需联网并支持谷歌浏览器)、被测服务器、温度计(可选择模拟模式)、功耗仪(可选择模拟模式)。若要生成可信报告,则必须链接功耗仪和温度计。注意功耗仪
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C