深度学习第二周

# 学习目标, 实现一个二分类具有一个隐藏层的神经网络,使用一个例如tanh的非线性激活函数

# 计算交叉熵损失函数,实现前向和反向传播

# 首先我们导入需要的包

import numpyas np

import operator

from functoolsimport reduce

import matplotlib.pyplotas plt

from testCases_v2import *

import sklearn

import sklearn.datasets

import sklearn.linear_model

from planar_utilsimport plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

# matplotlib inline

np.random.seed(1)# 如果设置相同的seed值,则每次随机数结果是一致的

# Dataset 首先,我们获取所需要的数据,变量是X, Y

X, Y = load_planar_dataset()

print(X.shape, Y.shape)

# Visualize the data, 因为plt scatter函数进行了微小的改版我们也需要修改下

#plt.scatter(X[0, :], X[1, :],c=reduce(operator.add, Y),s=40,cmap=plt.cm.Spectral)

#plt.show()

# 练习How many training examples do you have? in addition,what is the shape of the variables X and Y

def ex1():

### START CODE HERE ### (≈ 3 lines of code)

    shape_X = np.shape(X)

shape_Y = np.shape(Y)

m = np.shape(X)[1]# training set size

### END CODE HERE ###

    print('The shape of X is: '+str(shape_X))

print('The shape of Y is: '+str(shape_Y))

print('I have m = %d training examples! '%(m))

# 简单的logistic regression尝试一下效果

def simple_logistic():

clf = sklearn.linear_model.LogisticRegressionCV()

clf.fit(X.T, Y.T)

#画出他的决策边界

    plot_decision_boundary(lambda x: clf.predict(x), X, Y)

plt.title('Logistic regression')

plt.show()

# print accuracy

    LR_predictions = clf.predict(X.T)

print('Accuracy of logistic regression: %d ' %float(

(np.dot(Y, LR_predictions) + np.dot(1 - Y,1 - LR_predictions)) /float(Y.size) *100) +

'% ' +"(percentage of correctly labelled datapoints)")

# 下面实现一个简单的神经网络实现二分类,隐藏层设计为4个神经元组成,理论上来说越宽的神经元可以模拟任何函数

# 对于本例子有z1i = w1.dot xi+ b1

# a1i = tanh(z1i)

# z2i = w2.dot a1i+b2

# yi = a2i=sigmoid(z2i)

# yi = 1 if a2i > 0.5 else 0

# 交叉熵损失用于分类通常比MSE要好:j = ∑(yi*log(a2i)+(1-yi)*log(1-a2i))/-m

# 具体步骤:

# 1. Define the neural network structure ( # of input units,  # of hidden units, etc).

# 2. Initialize the model's parameters

# 3. Loop:

#    - Implement forward propagation

#    - Compute loss

#    - Implement backward propagation to get the gradients

#    - Update parameters (gradient descent)

# 定义神经网络的结构

def layer_size(X,Y):

'''

    :paramX: input dataset of shape(input size , number of examples)

    :paramY: labels of shape(output size, number if examples)

    :return:

n_x -- the size of the input layer

n_h -- the size of the hidden layer

n_y -- the size of the output layer

'''

### START CODE HERE ### (≈ 3 lines of code)

    n_x = np.shape(X)[0]# size of input layer

    n_h =4

    n_y = np.shape(Y)[0]# size of output layer

### END CODE HERE ###

    return (n_x, n_h, n_y)

# 初始化参数,首先可以使我们初始化的参数足够小

def initialize_parameters(n_x, n_h, n_y):

"""

Argument:

n_x -- size of the input layer

n_h -- size of the hidden layer

n_y -- size of the output layer

Returns:

params -- python dictionary containing your parameters:

W1 -- weight matrix of shape (n_h, n_x)

b1 -- bias vector of shape (n_h, 1)

W2 -- weight matrix of shape (n_y, n_h)

b2 -- bias vector of shape (n_y, 1)

"""

    np.random.seed(2)# we set up a seed so that your output matches ours although the initialization is random.

### START CODE HERE ### (≈ 4 lines of code)

    W1 = np.random.randn(n_h, n_x) *0.01

    b1 = np.zeros((n_h,1))

W2 = np.random.randn(n_y, n_h) *0.01

    b2 = np.zeros((n_y,1))

### END CODE HERE ###

    assert (W1.shape == (n_h, n_x))

assert (b1.shape == (n_h,1))

assert (W2.shape == (n_y, n_h))

assert (b2.shape == (n_y,1))

parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2}

return parameters

# 进行前向传播计算A1,A2,Z1,Z2......

def forward_propagation(X, parameters):

"""

Argument:

X -- input data of size (n_x, m)

parameters -- python dictionary containing your parameters (output of initialization function)

Returns:

A2 -- The sigmoid output of the second activation

cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"

"""

# Retrieve each parameter from the dictionary "parameters"

### START CODE HERE ### (≈ 4 lines of code)

    W1 = parameters['W1']

b1 = parameters['b1']

W2 = parameters['W2']

b2 = parameters['b2']

### END CODE HERE ###

# Implement Forward Propagation to calculate A2 (probabilities)

### START CODE HERE ### (≈ 4 lines of code)

    Z1 = np.dot(W1, X) + b1

A1 = np.tanh(Z1)

Z2 = np.dot(W2, A1) + b2

A2 = sigmoid(Z2)

### END CODE HERE ###

    assert (A2.shape == (1, X.shape[1]))

cache = {"Z1": Z1,

"A1": A1,

"Z2": Z2,

"A2": A2}

return A2, cache

# 计算我们的损失函数

def compute_cost(A2, Y,parameters):

"""

Computes the cross-entropy cost given in equation (13)

Arguments:

A2 -- The sigmoid output of the second activation, of shape (1, number of examples)

Y -- "true" labels vector of shape (1, number of examples)

parameters -- python dictionary containing your parameters W1, b1, W2 and b2

Returns:

cost -- cross-entropy cost given equation (13)

"""

    m = Y.shape[1]# number of example

# Compute the cross-entropy cost

### START CODE HERE ### (≈ 2 lines of code)

    logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2),1 - Y)

cost = -np.sum(logprobs) / m

### END CODE HERE ###

    cost = np.squeeze(cost)# makes sure cost is the dimension we expect.

# E.g., turns [[17]] into 17

    assert (isinstance(cost,float))

return cost

# 进行反向传播,计算dw,db

def backward_propagation(parameters, cache, X, Y):

"""

Implement the backward propagation using the instructions above.

Arguments:

parameters -- python dictionary containing our parameters

cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".

X -- input data of shape (2, number of examples)

Y -- "true" labels vector of shape (1, number of examples)

Returns:

grads -- python dictionary containing your gradients with respect to different parameters

"""

    m = X.shape[1]

# First, retrieve W1 and W2 from the dictionary "parameters".

### START CODE HERE ### (≈ 2 lines of code)

    W1 = parameters['W1']

W2 = parameters['W2']

### END CODE HERE ###

# Retrieve also A1 and A2 from dictionary "cache".

### START CODE HERE ### (≈ 2 lines of code)

    A1 = cache['A1']

A2 = cache['A2']

### END CODE HERE ###

# Backward propagation: calculate dW1, db1, dW2, db2.

### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)

    dZ2 = A2 - Y

dW2 = np.dot(dZ2, A1.T) / m

db2 = np.sum(dZ2,axis=1,keepdims=True) / m

dZ1 = np.multiply(np.dot(W2.T, dZ2), (1 - np.power(A1,2)))

dW1 = np.dot(dZ1, X.T) / m

db1 = np.sum(dZ1,axis=1,keepdims=True) *1. / m

### END CODE HERE ###

    grads = {"dW1": dW1,

"db1": db1,

"dW2": dW2,

"db2": db2}

return grads

# 此处我们的alha学习速率需要适中,过小则太慢,过大则无法达到局部最优点

# 更新我们的参数w,b

def update_parameters(parameters, grads, learning_rate=1.2):

"""

Updates parameters using the gradient descent update rule given above

Arguments:

parameters -- python dictionary containing your parameters

grads -- python dictionary containing your gradients

Returns:

parameters -- python dictionary containing your updated parameters

"""

# Retrieve each parameter from the dictionary "parameters"

### START CODE HERE ### (≈ 4 lines of code)

    W1 = parameters['W1']

b1 = parameters['b1']

W2 = parameters['W2']

b2 = parameters['b2']

### END CODE HERE ###

# Retrieve each gradient from the dictionary "grads"

### START CODE HERE ### (≈ 4 lines of code)

    dW1 = grads['dW1']

db1 = grads['db1']

dW2 = grads['dW2']

db2 = grads['db2']

## END CODE HERE ###

# Update rule for each parameter

### START CODE HERE ### (≈ 4 lines of code)

    W1 = W1 - learning_rate * dW1

b1 = b1 - learning_rate * db1

W2 = W2 - learning_rate * dW2

b2 = b2 - learning_rate * db2

### END CODE HERE ###

    parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2}

return parameters

# 这时候需要建立一个模型,方便调用

def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):

"""

Arguments:

X -- dataset of shape (2, number of examples)

Y -- labels of shape (1, number of examples)

n_h -- size of the hidden layer

num_iterations -- Number of iterations in gradient descent loop

print_cost -- if True, print the cost every 1000 iterations

Returns:

parameters -- parameters learnt by the model. They can then be used to predict.

"""

    np.random.seed(3)

n_x = layer_sizes(X, Y)[0]

n_y = layer_sizes(X, Y)[2]

# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".

### START CODE HERE ### (≈ 5 lines of code)

    parameters = initialize_parameters(n_x, n_h, n_y)

W1 = parameters['W1']

b1 = parameters['b1']

W2 = parameters['W2']

b2 = parameters['b2']

### END CODE HERE ###

# Loop (gradient descent)

    for iin range(0, num_iterations):

### START CODE HERE ### (≈ 4 lines of code)

# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".

        A2, cache = forward_propagation(X, parameters)

# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".

        cost = compute_cost(A2, Y, parameters)

# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".

        grads = backward_propagation(parameters, cache, X, Y)

# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".

        parameters = update_parameters(parameters, grads)

### END CODE HERE ###

# Print the cost every 1000 iterations

        if print_costand i %1000 ==0:

print("Cost after iteration %i: %f" % (i, cost))

return parameters

X_assess, Y_assess = layer_sizes_test_case()

(n_x, n_h, n_y) = layer_size(X_assess, Y_assess)

print("The size of the input layer is: n_x = " +str(n_x))

print("The size of the hidden layer is: n_h = " +str(n_h))

print("The size of the output layer is: n_y = " +str(n_y))

#simple_logistic()

# 小结,关于隐藏层的神经元选择较为重要,学习速率,以及激活函数的选择也是比较重要的,通常我们只在二分类上使用sigmoid函数,否则一般会

# 使用relu, leaky relu, tanh函数作为我们的激活函数.

你可能感兴趣的:(深度学习第二周)