设计模式 - 六大原则

Reference


快速理解-设计模式六大原则

设计模式的六大原则

设计模式之六大原则
作者:海子
出处:http://www.cnblogs.com/dolphin0520/
本博客中未标明转载的文章归作者海子和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

依赖倒置原则------依赖的三种方法

单一职责原则 Single Responsibility Principle, SRP


单一职责原则是最简单的面向对象设计原则,它用于控制类的粒度大小。

单一职责原则是实现高内聚、低耦合的指导方针,它是最简单但又最难运用的原则,需要设计人员发现类的不同职责并将其分离,而发现类的多重职责需要设计人员具有较强的分析设计能力和相关实践经验。

定义

不要存在多于一个导致类变更的原因。通俗的说,即一个类只负责一项职责 / 一个类只负责一个功能领域中的相应职责,或者可以定义为:就一个类而言,应该只有一个引起它变化的原因 / 应该有且仅有一个原因引起类的变更

问题由来

在软件系统中,一个类(大到模块,小到方法)承担的职责越多,它被复用的可能性就越小,而且一个类承担的职责过多,就相当于将这些职责耦合在一起,当其中一个职责变化时,可能会影响其他职责的运作。

类T负责两个不同的职责:职责P1,职责P2。当由于职责P1需求发生改变而需要修改类T时,有可能会导致原本运行正常的职责P2功能发生故障。

解决方案

降低类与类之间的耦合。

将职责进行分离,将不同的职责封装在不同的类中,即将不同的变化原因封装在不同的类中,如果多个职责总是同时发生改变则可将它们封装在同一类中。

分析

到单一职责原则,很多人都会不屑一顾。因为它太简单了。稍有经验的程序员即使从来没有读过设计模式、从来没有听说过单一职责原则,在设计软件时也会自觉的遵守这一重要原则,因为这是常识。在软件编程中,谁也不希望因为修改了一个功能导致其他的功能发生故障。而避免出现这一问题的方法便是遵循单一职责原则。虽然单一职责原则如此简单,并且被认为是常识,但是即便是经验丰富的程序员写出的程序,也会有违背这一原则的代码存在。为什么会出现这种现象呢?因为有职责扩散。所谓职责扩散,就是因为某种原因,职责P被分化为粒度更细的职责P1和P2。

比如:类T只负责一个职责P,这样设计是符合单一职责原则的。后来由于某种原因,也许是需求变更了,也许是程序的设计者境界提高了,需要将职责P细分为粒度更细的职责P1,P2,这时如果要使程序遵循单一职责原则,需要将类T也分解为两个类T1和T2,分别负责P1、P2两个职责。但是在程序已经写好的情况下,这样做简直太费时间了。所以,简单的修改类T,用它来负责两个职责是一个比较不错的选择,虽然这样做有悖于单一职责原则。(这样做的风险在于职责扩散的不确定性,因为我们不会想到这个职责P,在未来可能会扩散为P1,P2,P3,P4……Pn。所以记住,在职责扩散到我们无法控制的程度之前,立刻对代码进行重构。)

例子

重构,职责分解

Sunny软件公司开发人员针对某CRM(Customer Relationship Management,客户关系管理)系统中客户信息图形统计模块提出了如图所示初始设计方案:

CustomerDataChart类.png

CustomerDataChart类中的方法说明如下:getConnection()方法用于连接数据库,findCustomers()用于查询所有的客户信息,createChart()用于创建图表,displayChart()用于显示图表。

CustomerDataChart类承担了太多的职责,既包含与数据库相关的方法,又包含与图表生成和显示相关的方法。如果在其他类中也需要连接数据库或者使用findCustomers()方法查询客户信息,则难以实现代码的重用。无论是修改数据库连接方式还是修改图表显示方式都需要修改该类,它不止一个引起它变化的原因,违背了单一职责原则。因此需要对该类进行拆分,使其满足单一职责原则,类CustomerDataChart可拆分为如下三个类:

  1. DBUtil:负责连接数据库,包含数据库连接方法getConnection();
  2. CustomerDAO:负责操作数据库中的Customer表,包含对Customer表的增删改查等方法,如findCustomers();
  3. CustomerDataChart:负责图表的生成和显示,包含方法createChart()和displayChart()。

现使用单一职责原则对其进行重构。

重构后的结构图.png
职责扩散
    class Animal{
        public void breathe(String animal){
            System.out.println(animal+"呼吸空气");
        }
    }
    public class Client{
        public static void main(String[] args){
            Animal animal = new Animal();
            animal.breathe("牛");
            animal.breathe("羊");
            animal.breathe("猪");
        }
    }

运行结果:

牛呼吸空气  
羊呼吸空气  
猪呼吸空气

程序上线后,发现问题了,并不是所有的动物都呼吸空气的,比如鱼就是呼吸水的。修改时如果遵循单一职责原则,需要将Animal类细分为陆生动物类Terrestrial,水生动物Aquatic,代码如下:

    class Terrestrial{
        public void breathe(String animal){
            System.out.println(animal+"呼吸空气");
        }
    }
    class Aquatic{
        public void breathe(String animal){
            System.out.println(animal+"呼吸水");
        }
    }

    public class Client{
        public static void main(String[] args){
            Terrestrial terrestrial = new Terrestrial();
            terrestrial.breathe("牛");
            terrestrial.breathe("羊");
            terrestrial.breathe("猪");

            Aquatic aquatic = new Aquatic();
            aquatic.breathe("鱼");
        }
    }

运行结果:

牛呼吸空气  
羊呼吸空气  
猪呼吸空气  
鱼呼吸水

我们会发现如果这样修改花销是很大的,除了将原来的类分解之外,还需要修改客户端。而直接修改类Animal来达成目的虽然违背了单一职责原则,但花销却小的多,代码如下:

    class Animal{
        public void breathe(String animal){
            if("鱼".equals(animal)){
                System.out.println(animal+"呼吸水");
            }else{
                System.out.println(animal+"呼吸空气");
            }
        }
    }

    public class Client{
        public static void main(String[] args){
            Animal animal = new Animal();
            animal.breathe("牛");
            animal.breathe("羊");
            animal.breathe("猪");
            animal.breathe("鱼");
        }
    }

可以看到,这种修改方式要简单的多。但是却存在着隐患:有一天需要将鱼分为呼吸淡水的鱼和呼吸海水的鱼,则又需要修改Animal类的breathe方法,而对原有代码的修改会对调用"猪""牛""羊"等相关功能带来风险,也许某一天你会发现程序运行的结果变为"牛呼吸水"了。这种修改方式直接在代码级别上违背了单一职责原则,虽然修改起来最简单,但隐患却是最大的。还有一种修改方式:

    class Animal{
        public void breathe(String animal){
            System.out.println(animal+"呼吸空气");
        }

        public void breathe2(String animal){
            System.out.println(animal+"呼吸水");
        }
    }

    public class Client{
        public static void main(String[] args){
            Animal animal = new Animal();
            animal.breathe("牛");
            animal.breathe("羊");
            animal.breathe("猪");
            animal.breathe2("鱼");
        }
    }

可以看到,这种修改方式没有改动原来的方法,而是在类中新加了一个方法,这样虽然也违背了单一职责原则,但在方法级别上却是符合单一职责原则的,因为它并没有动原来方法的代码。这三种方式各有优缺点,那么在实际编程中,采用哪一中呢?其实这真的比较难说,需要根据实际情况来确定。我的原则是:

只有逻辑足够简单,才可以在代码级别上「添加 if - else」违反单一职责原则;只有类中方法数量足够少,才可以在方法级别上「添加 function」违反单一职责原则;

例如本文所举的这个例子,它太简单了,它只有一个方法,所以,无论是在代码级别上违反单一职责原则,还是在方法级别上违反,都不会造成太大的影响。实际应用中的类都要复杂的多,一旦发生职责扩散而需要修改类时,除非这个类本身非常简单,否则还是遵循单一职责原则的好。

优点

  • 可以降低类的复杂度,一个类只负责一项职责,其逻辑肯定要比负责多项职责简单的多;
  • 提高类的可读性,提高系统的可维护性;
  • 变更引起的风险降低,变更是必然的,如果单一职责原则遵守的好,当修改一个功能时,可以显著降低对其他功能的影响。
    需要说明的一点是单一职责原则不只是面向对象编程思想所特有的,只要是模块化的程序设计,都适用单一职责原则。

需注意

单一职责原则提出了一个编写程序的标准,用“职责”或“变化原因”来衡量接口或类设计得是否优良,但是“职责”和“变化原因”都是不可以度量的,因项目和环境而异。

开闭原则 Open-Closed Principle, OCP


开闭原则是面向对象的可复用设计的第一块基石,它是最重要的面向对象设计原则。

定义

一个软件实体(如类、模块和函数)应当对扩展开放,对修改关闭。即软件实体应尽量在不修改原有代码的情况下进行扩展。

软件实体可以指一个软件模块、一个由多个类组成的局部结构或一个独立的类。
尽量通过扩展软件实体来解决需求变化,而不是通过修改已有的代码来完成变化

问题由来

任何软件都需要面临一个很重要的问题,即它们的需求会随时间的推移而发生变化。当软件系统需要面对新的需求时,我们应该尽量保证系统的设计框架是稳定的。

在软件的生命周期内,因为变化、升级和维护等原因需要对软件原有代码进行修改时,可能会给旧代码中引入错误,也可能会使我们不得不对整个功能进行重构,并且需要原有代码经过重新测试。

如果一个软件设计符合开闭原则,那么可以非常方便地对系统进行扩展,而且在扩展时无须修改现有代码,使得软件系统在拥有适应性和灵活性的同时具备较好的稳定性和延续性。随着软件规模越来越大,软件寿命越来越长,软件维护成本越来越高,设计满足开闭原则的软件系统也变得越来越重要。

解决方案

用抽象构建框架,用实现扩展细节。

为了满足开闭原则,需要对系统进行抽象化设计,抽象化是开闭原则的关键。可以为系统定义一个相对稳定的抽象层,而将不同的实现行为移至具体的实现层中完成。在很多面向对象编程语言中都提供了接口、抽象类等机制,可以通过它们定义系统的抽象层,再通过具体类来进行扩展。如果需要修改系统的行为,无须对抽象层进行任何改动,只需要增加新的具体类来实现新的业务功能即可,实现在不修改已有代码的基础上扩展系统的功能,达到开闭原则的要求。

分析

抽象化是开闭原则的关键。

开闭原则是面向对象设计中最基础的设计原则,它指导我们如何建立稳定灵活的系统。

开闭原则可能是设计模式六项原则中定义最模糊的一个了,它只告诉我们对扩展开放,对修改关闭,可是到底如何才能做到对扩展开放,对修改关闭,并没有明确的告诉我们。以前,如果有人告诉我"你进行设计的时候一定要遵守开闭原则",我会觉的他什么都没说,但貌似又什么都说了。因为开闭原则真的太虚了。

其实,遵循设计模式其他5大原则,以及使用23种设计模式的目的就是遵循开闭原则。也就是说,只要我们其他5项原则遵守的好了,设计出的软件自然是符合开闭原则的,这个开闭原则更像是其他五项原则遵守程度的"平均得分",其他5项原则遵守的好,平均分自然就高,说明软件设计开闭原则遵守的好;如果其他5项原则遵守的不好,则说明开闭原则遵守的不好。

开闭原则无非就是想表达这样一层意思:用抽象构建框架,用实现扩展细节。因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节,我们用从抽象派生的实现类来进行扩展,当软件需要发生变化时,我们只需要根据需求重新派生一个实现类来扩展就可以了。当然前提是我们的抽象要合理,要对需求的变更有前瞻性和预见性才行。

说到这里,再回想一下其他说的5项原则,恰恰是告诉我们用抽象构建框架,用实现扩展细节的注意事项而已:单一职责原则告诉我们实现类要职责单一;里氏替换原则告诉我们不要破坏继承体系;依赖倒置原则告诉我们要面向接口编程;接口隔离原则告诉我们在设计接口的时候要精简单一;迪米特法则告诉我们要降低耦合。而开闭原则是总纲,他告诉我们要对扩展开放,对修改关闭。

最后说明一下如何去遵守这六个原则。对这六个原则的遵守并不是是和否的问题,而是多和少的问题,也就是说,我们一般不会说有没有遵守,而是说遵守程度的多少。 任何事都是过犹不及,设计模式的六个设计原则也是一样,制定这六个原则的目的并不是要我们刻板的遵守他们,而需要根据实际情况灵活运用。对他们的遵守程度只要在一个合理的范围内,就算是良好的设计。我们用一幅图来说明一下。

image.png

图中的每一条维度各代表一项原则,我们依据对这项原则的遵守程度在维度上画一个点,则如果对这项原则遵守的合理的话,这个点应该落在红色的同心圆内部;如果遵守的差,点将会在小圆内部;如果过度遵守,点将会落在大圆外部。一个良好的设计体现在图中,应该是六个顶点都在同心圆中的六边形。

principle

在上图中,设计1、设计2属于良好的设计,他们对六项原则的遵守程度都在合理的范围内;设计3、设计4设计虽然有些不足,但也基本可以接受;设计5则严重不足,对各项原则都没有很好的遵守;而设计6则遵守过渡了,设计5和设计6都是迫切需要重构的设计。

到这里,设计模式的六大原则就写完了。主要参考书籍有《设计模式》《设计模式之禅》《大话设计模式》以及网上一些零散的文章,但主要内容主要还是我本人对这六个原则的感悟。写出来的目的一方面是对这六项原则系统地整理一下,一方面也与广大的网友分享,因为设计模式对编程人员来说,的确非常重要。正如有句话叫做一千个读者眼中有一千个哈姆雷特,如果大家对这六项原则的理解跟我有所不同,欢迎留言,大家共同探讨。

例子

Sunny软件公司开发的CRM系统可以显示各种类型的图表,如饼状图和柱状图等,为了支持多种图表显示方式,原始设计方案如图所示:

image.png

在ChartDisplay类的display()方法中存在如下代码片段:

    if (type.equals("pie")) {
        PieChart chart = new PieChart();
        chart.display();
    }
    else if (type.equals("bar")) {
        BarChart chart = new BarChart();
        chart.display();
    }

在该代码中,如果需要增加一个新的图表类,如折线图LineChart,则需要修改ChartDisplay类的display()方法的源代码,增加新的判断逻辑,违反了开闭原则。

现对该系统进行重构,使之符合开闭原则。

在本实例中,由于在ChartDisplay类的display()方法中针对每一个图表类编程,因此增加新的图表类不得不修改源代码。可以通过抽象化的方式对系统进行重构,使之增加新的图表类时无须修改源代码,满足开闭原则。
使用依赖倒置(原则), 构造注入
具体做法如下:

  1. 增加一个抽象图表类AbstractChart,将各种具体图表类作为其子类;
  2. ChartDisplay类针对抽象图表类进行编程,由客户端来决定使用哪种具体图表。
重构后的结构图.png

我们引入了抽象图表类AbstractChart,且ChartDisplay针对抽象图表类进行编程,并通过setChart()方法由客户端来设置实例化的具体图表对象,在ChartDisplay的display()方法中调用chart对象的display()方法显示图表。如果需要增加一种新的图表,如折线图LineChart,只需要将LineChart也作为AbstractChart的子类,在客户端向ChartDisplay中注入一个LineChart对象即可,无须修改现有类库的源代码。

优点

需注意

原则


定义

问题由来

解决方案

分析

例子

优点

需注意

你可能感兴趣的:(设计模式 - 六大原则)