TCP协议与UDP协议

UDP协议

UDP协议端的格式

TCP协议与UDP协议_第1张图片

  • 16位UDP长度,表示整个数据报(UDP首部+UDP数据)的最大长度;
  • 如果校验和出错,就会直接丢弃;

 UDP的特点

UDP传输过程类似寄信

无连接

知道对端的IP和端口号就直接进行传输,不需要建立连接;

不可靠

没有任何安全机制,发送端发送数据报以后,如果因为网络故障该段无法发到对方,UDP协议层也不会给应用层返回任何错误信息;

面向数据报

应用层交给UDP多长的报文,UDP原样发送,既不会拆分,也不会合并;


用UDP传输100个字节的数据:

如果发送端一次发送100个字节,那么接收端也必须一次接收100个字节;而不能循环接收10次,每次接收10个字节。

缓冲区

UDP只有接收缓冲区,没有发送缓冲区:

UDP没有真正意义上的 发送缓冲区。发送的数据会直接交给内核,由内核将数据传给网络层协议进行后续的传输动作;


UDP具有接收缓冲区,但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;如果缓冲区满了,再到达的UDP数据就会被丢弃;

 UDP的socket既能读也能写,这个概念叫全双工

大小受限

UDP协议首部中有一个16位的最大长度,也就是说一个UDP能传输最大长度是64K(包含UDP首部)

基于UDP的应用层协议

  • NFS:网络文件系统
  • TFTP:简单文件传输协议
  • DHCP:动态主机协议
  • BOOTP:启动协议(用于无盘设备启动)
  • DNS:域名解析协议

当然,也包括你自己写UDP程序时自定义的应用层协议
 

扩展问提

经典面试题:
1. UDP本身是无连接,不可靠,面向数据报的协议,如果要基于传输层UDP协议,来实现一个可靠传输,应该如何设计?
2. UDP大小是受限的,如果要基于传输层UDP协议,传输超过64K的数据,应该如何设计?
以上两个问题答案类似,都可以参考TCP的可靠性机制在应用层实现类似的逻辑:
 

例如:

  • 引入序列号,保证数据顺序;
  • 引入确认应答,确保对端收到了数据;
  • 引入超时重传,如果隔一段时间没有应答,就重发数据;
  • ……
     

TCP协议 

TCP,即Transmission Control Protocol,传输控制协议。人如其名,要对数据的传输进行一个详细的控制。


TCP协议段格式
TCP协议与UDP协议_第2张图片

  • 源/目的端口号:表示数据是从哪个进程来,到哪个进程去;
  • 32位序号/32位确认号:后面详细讲;
  • 4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最大长度是15 * 4 = 60
  • 6位标志位:1.URG:紧急指针是否有效 2.ACK:确认号是否有效 3.PSH:提示接收端应用程序立即从TCP缓冲区把数据读走 4.PST:对方要求重新建立连接;我们把携带RST标识的称为复位报文段 5.SYN:请求建立连接:我们把携带SYN标识的称为同步报文段 6.FIN:通知对方,本端要关闭了,我们称携带FIN标识的为结束报文段
  • 16位窗口大小:后面再说
  • 16位校验和:发送端填充,CRC校验。接收端校验不通过,则认为数据有问题。此处的检验和不光包含TCP首部,也包含TCP数据部分
  • 16位紧急指针:标识哪部分数据是紧急数据
  • 40字节头部选项:暂时忽略
     

TCP原理

TCP对数据传输提供的管控机制,主要体现在两个方面:安全和效率。
这些机制和多线程的设计原则类似:保证数据传输安全的前提下,尽可能的提高传输效率


确认应答机制(安全机制)
TCP协议与UDP协议_第3张图片

TCP将每个数据都进行了编号,即为序列号.

TCP协议与UDP协议_第4张图片

每一个ACK都带有对应的确认序号,意思是告诉发送者,我已经收到了哪些数据;下一次你从哪里开始发。

超时重传机制(安全机制)

TCP协议与UDP协议_第5张图片

  • 主机A发送数据给B之后,可能因为网络拥堵等原因,数据无法到达主机B
  • 如果主机A在一个特定时间间隔内没有收到B发来的确认应答,就会进行重发

但是,主机A未收到B发来的确认应答,也可能是因为ACK丢失了;

TCP协议与UDP协议_第6张图片 因此主机B会收到很多重复数据。那么TCP协议需要能够识别出那些包是重复的包,并且把重复的丢弃掉。

这时候我们可以利用前面提到的序列号,就可以很容易做到去重的效果
那么,如果超时的时间如何确定?
 

  • 最理想的情况下,找到一个最小的时间,保证 "确认应答一定能在这个时间内返回"。
  • 但是这个时间的长短,随着网络环境的不同,是有差异的。
  • 如果超时时间设的太长,会影响整体的重传效率;
  • 如果超时时间设的太短,有可能会频繁发送重复的包;

TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态计算这个最大超时时间

  •  Linux中(BSD Unix和Windows也是如此),超时以500ms为一个单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。
  • 如果重发一次之后,仍然得不到应答,等待 2*500ms 后再进行重传。
  • 如果仍然得不到应答,等待 4*500ms 进行重传。依次类推,以指数形式递增。
  • 累计到一定的重传次数,TCP认为网络或者对端主机出现异常,强制关闭连接。

连接管理机制(安全机制) 

TCP协议与UDP协议_第7张图片

服务端状态转化:
 

  • [CLOSED -> LISTEN] 服务器端调用listen后进入LISTEN状态,等待客户端连接;
  • [LISTEN -> SYN_RCVD] 一旦监听到连接请求(同步报文段),就将该连接放入内核等待队列中,并向客户端发送SYN确认报文。
  • [SYN_RCVD -> ESTABLISHED] 服务端一旦收到客户端的确认报文,就进入ESTABLISHED状态,可以进行读写数据了。
  • [ESTABLISHED -> CLOSE_WAIT] 当客户端主动关闭连接(调用close),服务器会收到结束报文段,服务器返回确认报文段并进入CLOSE_WAIT;
  • [CLOSE_WAIT -> LAST_ACK] 进入CLOSE_WAIT后说明服务器准备关闭连接(需要处理完之前的数据);当服务器真正调用close关闭连接时,会向客户端发送FIN,此时服务器进入LAST_ACK状态,等待最后一个ACK到来(这个ACK是客户端确认收到了FIN)
  • [LAST_ACK -> CLOSED] 服务器收到了对FIN的ACK,彻底关闭连接。

客户端状态转化:

  • [CLOSED -> SYN_SENT] 客户端调用connect,发送同步报文段;
  • [SYN_SENT -> ESTABLISHED] connect调用成功,则进入ESTABLISHED状态,开始读写数据;
  • [ESTABLISHED -> FIN_WAIT_1] 客户端主动调用close时,向服务器发送结束报文段,同时进入FIN_WAIT_1;
  • [FIN_WAIT_1 -> FIN_WAIT_2] 客户端收到服务器对结束报文段的确认,则进入FIN_WAIT_2,开始等待服务器的结束报文段;
  • [FIN_WAIT_2 -> TIME_WAIT] 客户端收到服务器发来的结束报文段,进入TIME_WAIT,并发出LAST_ACK;
  • [TIME_WAIT -> CLOSED] 客户端要等待一个2MSL(Max Segment Life,报文最大生存时间)的时间,才会进入CLOSED状态。

 同三次握手中接收端把中间两次交互合二为一不同,四次挥手中间的ACK和FIN触发时机是不同的

ACK是内核响应的,接收端收到FIN,就会立即返回ACK;第二个FIN是应用程序的代码触发,接收端调用close方法,才会触发

为甚要TIME_WAIT 

为了防止最后一个ACK丢失

如果最后一个ACK丢了,B就会触发超时重传,重新把FIN给传一遍,如果A没有TIME_WAIT,就意味着A这个时候就已经释放连接了,此时重传的FIN就不可能被A处理,返回不离骚ACK

TIME_WAIT等待多久

TIME_WAIT的时间是2MSL

滑动窗口(效率机制)


刚才我们讨论了确认应答策略,对每一个发送的数据段,都要给一个ACK确认应答。收到ACK后再发送下一个数据段。这样做有一个比较大的缺点,就是性能较差。尤其是数据往返的时间较长的时候。

既然这样一发一收的方式性能较低,那么我们一次发送多条数据,就可以大大的提高性能(其实是将多个段的等待时间重叠在一起了)
TCP协议与UDP协议_第8张图片

  •  窗口大小指的是无需等待确认应答而可以继续发送数据的最大值。上图的窗口大小就是4000个字节(四个段)。
  • 发送前四个段的时候,不需要等待任何ACK,直接发送;
  • 收到第一个ACK后,滑动窗口向后移动,继续发送第五个段的数据;依次类推
  • 操作系统内核为了维护这个滑动窗口,需要开辟 发送缓冲区 来记录当前还有哪些数据没有应答;只有确认应答过的数据,才能从缓冲区删掉
  • 窗口越大,则网络的吞吐率就越高;

TCP协议与UDP协议_第9张图片 

那么如果出现了丢包,如何进行重传?这里分两种情况讨论.

情况一:数据包已经抵达,ACK被丢了

TCP协议与UDP协议_第10张图片
这种情况下,部分ACK丢了并不要紧,因为可以通过后续的ACK进行确认

当前序列号确认传输成功,涵盖了前一个序列号数据传输

情况二:数据包就直接丢了

快重传(效率机制)

TCP协议与UDP协议_第11张图片

  •  当某一段报文段丢失之后,发送端会一直收到 1001 这样的ACK,就像是在提醒发送端 "我想要的是 1001" 一样;
  • 如果发送端主机连续三次收到了同样一个 "1001" 这样的应答,就会将对应的数据 1001 -
    2000 重新发送;
  • 这个时候接收端收到了 1001 之后,再次返回的ACK就是7001了(因为2001 - 7000)接收端其实之前就已经收到了,被放到了接收端操作系统内核的接收缓冲区中;

这种机制被称为 "高速重发控制"(也叫 "快重传")

流量控制(安全机制)


接收端处理数据的速度是有限的。如果发送端发的太快,导致接收端的缓冲区被打满,这个时候如果发送端继续发送,就会造成丢包,继而引起丢包重传等等一系列连锁反应。


因此TCP支持根据接收端的处理能力,来决定发送端的发送速度,这个机制就叫做流量控制(Flow
Control)

  • 接收端将自己可以接收的缓冲区大小放入TCP首部中的"窗口大小"字段,通过ACK通知发送端;
  • 窗口越大字段越大,说明网络吞吐量越高;
  • 接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端;
  • 发送端接受到这个窗口之后,就会减慢自己的发送速度;
  • 如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端。
     


 

TCP协议与UDP协议_第12张图片

接收端如何把窗口大小告诉发送端呢?回忆我们的TCP首部中,有一个窗口字段,就是存放窗口大小信息;

 那么问题来了,16位数字最大表示65535,那么TCP窗口最大就是65535字节么?

实际上,TCP首部40字节选项中还包含了一个窗口扩大因子M,实际窗口大小是 窗口字段的值左移 M位;

 拥塞控制(安全机制)

在开始阶段就发送大量数据,可能会引发问题

原因是不清楚当前的网络状态是否比较拥堵,。在不清楚当前网络状态下,贸然发送大量的数据,是很有可能引起雪上加霜的。

TCP引入 慢启动 机制,先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据;


TCP协议与UDP协议_第13张图片

  • 此处引入一个概念为拥塞窗口
  • 发送开始的时候,定义拥塞窗口大小为1
  • 每次收到一个ACK应答,拥塞窗口加1;
  • 每次发送数据包的时候,将拥塞窗口和接收端主机反馈的窗口大小做比较,取较小的值作为实际发送的窗口;

像上面这样的拥塞窗口增长速度,是指数级别的。"慢启动" 只是指初使时慢,但是增长速度非常快。
 

  • 为了不增长的那么快,因此不能使拥塞窗口单纯的加倍
  • 此处引入一个叫做慢启动的阈值
  • 当拥塞窗口超过这个阈值的时候,不再按照指数方式增长,而是按照线性方式增长

TCP协议与UDP协议_第14张图片 

  • 当TCP开始启动的时候,慢启动阈值等于窗口最大值;
  • 在每次超时重发的时候,慢启动阈值会变成原来的一半,同时拥塞窗口置回1;

少量的丢包,我们仅仅是触发超时重传;大量的丢包,我们就认为网络拥塞;


当TCP通信开始后,网络吞吐量会逐渐上升;随着网络发生拥堵,吞吐量会立刻下降;
 

拥塞控制,归根结底是TCP协议想尽可能快的把数据传输给对方,但是又要避免给网络造成太大压力的折中方案
 

流量控制和拥塞控制都是在限制发送窗口的大小

最终时机发送窗口的大小,是取 流量控制拥塞控制 中窗口的较小值

延时应答(效率机制)

如果接收数据的主机立刻返回ACK应答,这时候返回的窗口可能比较小。
 

  • 假设接收端缓冲区为1M。一次收到了500K的数据;如果立刻应答,返回的窗口就500K
  • 但实际上可能处理端处理的速度很快,10ms之内就把500K数据从缓冲区消费掉了;
  • 在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过来;
  • 如果接收端稍微等一会再应答,比如等待200ms再应答,那么这个时候返回的窗口大小就是1M;

一定要记得,窗口越大,网络吞吐量就越大,传输效率就越高。我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
 

那么所有的包都可以延迟应答么?肯定也不是
 

  • 数量限制:每隔N个包就应答一次;
  • 时间限制:超过最大延迟时间就应答一次;

具体的数量和超时时间,依操作系统不同也有差异;一般N取2,超时时间取200ms;
 

捎带应答(效率机制)

在延迟应答的基础上,我们发现,很多情况下,客户端服务器在应用层也是 "一发一收" 的。意味着客户端给服务器说了 "How are you",服务器也会给客户端回一个 "Fine, thank you";

那么这个时候ACK就可以搭顺风车,和服务器回应的 "Fine,thank you" 一起回给客户端
TCP协议与UDP协议_第15张图片

其他特性:面向字节流

粘包问题
  • 首先要明确,粘包问题中的 "包" ,是指的应用层的数据包。
  • 在TCP的协议头中,没有如同UDP一样的 "报文长度" 这样的字段,但是有一个序号这样的字段。
  • 站在传输层的角度,TCP是一个一个报文过来的。按照序号排好序放在缓冲区中
  • 站在应用层的角度,看到的只是一串连续的字节数据
  • 那么应用程序看到了这么一连串的字节数据,就不知道从哪个部分开始到哪个部分,是一个完整的应用层数据包。

 那么如何避免粘包问题呢?归根结底就是一句话,明确两个包之间的边界

  • 对于定长的包,保证每次都按固定大小读取即可;例如上面的Request结构,是固定大小的,那么就从缓冲区从头开始按sizeof(Request)依次读取即可;
  • 对于变长的包,可以在包头的位置,约定一个包总长度的字段,从而就知道了包的结束位置;
  • 对于变长的包,还可以在包和包之间使用明确的分隔符(应用层协议,是程序猿自己来定的,只要保证分隔符不和正文冲突即可);

 思考:对于UDP协议来说,是否也存在 "粘包问题" 呢?

  • 对于UDP,如果还没有上层交付数据,UDP的报文长度仍然在。同时,UDP是一个一个把数据交付给应用层。就有很明确的数据边界。
  • 站在应用层的站在应用层的角度,使用UDP的时候,要么收到完整的UDP报文,要么不收。不会出现"半个"的情况。

其他特性:缓冲区

创建一个TCP的socket,同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区

  • 调用write时,数据会先写入发送缓冲区中;
  • 如果发送的字节数太长,会被拆分成多个TCP的数据包发出;
  • 如果发送的字节数太短,就会先在缓冲区里等待,等到缓冲区长度差不多了,或者其他合适的时机发送出去;
  • 然后应用程序可以调用read从接收缓冲区拿数据;
  • 另一方面,TCP的一个连接,既有发送缓冲区,也有接收缓冲区,那么对于这一个连接,既可以读数据,也可以写数据。这个概念叫做 全双工

 由于缓冲区的存在,TCP程序的读和写不需要一一匹配,例如:

  • 写100个字节数据时,可以调用一次write写100个字节,也可以调用100次write,每次写一个字节;
  • 读100个字节数据时,也完全不需要考虑写的时候是怎么写的,既可以一次read 100个字
    节,也可以一次read一个字节,重复100次;

 TCP异常状况

如果使用TCP过程中出现意外,会如何处理?

1)进程终止:

进程终止会释放文件,相当于调用socket.close(),此时仍可以发送FIN,和正常关闭没什区别.(TCP的连接,可以独立于进程存在,进程没了,TCP连接不一定没)

2)主机关机(正常流程):

在进行关机的时候,就会触发强制终止进程操作(相当于进程终止)

如果在系统关闭之前,对端返回的ACK和FIN到了,此时系统还是可以返回ACK,进行正常的四次挥手;如果系统已经关闭,ACK和FIN迟到了,无法进行后续的ACK响应,站在对端的角度,对端一位FIN丢包了,重传几次FIN,还是没响应,就会自动放弃连接

3)主机掉电(非正常)

此时,是一瞬间的事情,来不及结束进程,也来不及发送FIN,主机直接停机了,站在对端的角度,对端不清楚

1.如果对端在发送数据(接收方掉电),发送的数据就会一直等待ACK,触发超时重传,触发TCP连续重置功能,发起"复位报文段".如果复位报文段发过去也没有效果,此时就会释放连接了

2.如果是对端在接收数据(发送方掉电),对端还在等待数据到达,没等到,是无法区分对端是没法消息,还是对端挂了

TCP中提供了心跳包机制,接收方会周期性的发给对方一个特殊的,不携带业务数据的数据包,并且期望对方返回一个应答.

如果对方没有应答,并且重复了多次之后仍然没有,就视为对方挂了,此时就可以单方面释放连接了

4)网线断开

与主句掉电相似

TCP/UDP对比

我们说了TCP是可靠连接,那么是不是TCP一定就优于UDP呢?TCP和UDP之间的优点和缺点,不能简单,绝对的进行比较
 

  • TCP用于可靠传输的情况,应用于文件传输,重要状态更新等场景;
  • UDP用于对高速传输和实时性要求较高的通信领域,例如,早期的QQ,视频传输等。另外UDP可以用于广播;

你可能感兴趣的:(tcp/ip,udp,网络协议)