iOS底层 cache_t分析

类的结构源码如下,前面分析了isasuperclassbits都已经分析过了,现在来看看cache,首先查看cache所在的位置。
首先贴源码:

struct objc_class : objc_object {
    // Class ISA; 
    Class superclass; 
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags  
    class_rw_t *data() { 
        return bits.data();
    }
}

cache_t在结构体objc_class内,ISA占8个字节,superclass占8个字节,所以cache_t存在于步长为8的第三个位置。

以下是cache_t源码,结构体cache_t中有bucket_t结构体以及类型为mask_t的_mask和_occupied共占16个字节

struct cache_t {
    struct bucket_t *_buckets; // 8
    //typedef uint32_t mask_t;
    mask_t _mask;  // 4
    mask_t _occupied; // 4

public:
    struct bucket_t *buckets();
    mask_t mask();
    mask_t occupied();
    void incrementOccupied();
    void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
    void initializeToEmpty();

    mask_t capacity();
    bool isConstantEmptyCache();
    bool canBeFreed();

    static size_t bytesForCapacity(uint32_t cap);
    static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);

    void expand();
    void reallocate(mask_t oldCapacity, mask_t newCapacity);
    struct bucket_t * find(cache_key_t key, id receiver);

    static void bad_cache(id receiver, SEL sel, Class isa) __attribute__((noreturn));
};

接着查看查看bucket_t的结构,可以看出这里面有impkey

struct bucket_t {
private:
    // IMP-first is better for arm64e ptrauth and no worse for arm64.
    // SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
    MethodCacheIMP _imp;
    cache_key_t _key;
#else
    cache_key_t _key;
    MethodCacheIMP _imp;
#endif

public:
    inline cache_key_t key() const { return _key; }
    inline IMP imp() const { return (IMP)_imp; }
    inline void setKey(cache_key_t newKey) { _key = newKey; }
    inline void setImp(IMP newImp) { _imp = newImp; }

    void set(cache_key_t newKey, IMP newImp);
};

首先查看cache调用过程,此处接iOS底层 消息查找流程
cache_fill

void cache_fill(Class cls, SEL sel, IMP imp, id receiver)
{
#if !DEBUG_TASK_THREADS
    mutex_locker_t lock(cacheUpdateLock);
    cache_fill_nolock(cls, sel, imp, receiver);
#else
    _collecting_in_critical();
    return;
#endif
}

查看cache_fill_nolock

static void cache_fill_nolock(Class cls, SEL sel, IMP imp, id receiver)
{
    cacheUpdateLock.assertLocked();

    // Never cache before +initialize is done
    if (!cls->isInitialized()) return;

    // Make sure the entry wasn't added to the cache by some other thread 
    // before we grabbed the cacheUpdateLock.
    if (cache_getImp(cls, sel)) return;

    cache_t *cache = getCache(cls);
    cache_key_t key = getKey(sel);

    // Use the cache as-is if it is less than 3/4 full
    mask_t newOccupied = cache->occupied() + 1;
    mask_t capacity = cache->capacity();
    if (cache->isConstantEmptyCache()) {
        // Cache is read-only. Replace it.
        cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
    }
    else if (newOccupied <= capacity / 4 * 3) {
        // Cache is less than 3/4 full. Use it as-is.
    }
    else {
        // Cache is too full. Expand it.
        cache->expand();
    }

    // Scan for the first unused slot and insert there.
    // There is guaranteed to be an empty slot because the 
    // minimum size is 4 and we resized at 3/4 full.
    bucket_t *bucket = cache->find(key, receiver);
    if (bucket->key() == 0) cache->incrementOccupied();
    bucket->set(key, imp);
}

occupied

mask_t cache_t::occupied() 
{
    return _occupied;
}

capacity

mask_t cache_t::capacity() 
{
    return mask() ? mask()+1 : 0; 
}

reallocate 重新分配

void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
{
    bool freeOld = canBeFreed();

    bucket_t *oldBuckets = buckets();
    bucket_t *newBuckets = allocateBuckets(newCapacity);

    // Cache's old contents are not propagated. 
    // This is thought to save cache memory at the cost of extra cache fills.
    // fixme re-measure this

    assert(newCapacity > 0);
    assert((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);

    setBucketsAndMask(newBuckets, newCapacity - 1);
    
    if (freeOld) {
        cache_collect_free(oldBuckets, oldCapacity);
        cache_collect(false);
    }
}

expand扩容

void cache_t::expand()
{
    cacheUpdateLock.assertLocked();
    
    uint32_t oldCapacity = capacity();
    uint32_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE;

    if ((uint32_t)(mask_t)newCapacity != newCapacity) {
        // mask overflow - can't grow further
        // fixme this wastes one bit of mask
        newCapacity = oldCapacity;
    }

    reallocate(oldCapacity, newCapacity);
}

find 查找相应的存储

bucket_t * cache_t::find(cache_key_t k, id receiver)
{
    assert(k != 0);

    bucket_t *b = buckets();
    mask_t m = mask();
    // 通过cache_hash函数【begin  = k & m】计算出key值 k 对应的 index值 begin,用来记录查询起始索引
    mask_t begin = cache_hash(k, m);
    // begin 赋值给 i,用于切换索引
    mask_t i = begin;
    do {
        if (b[i].key() == 0  ||  b[i].key() == k) {
            //用这个i从散列表取值,如果取出来的bucket_t的 key = k,则查询成功,返回该bucket_t,
            //如果key = 0,说明在索引i的位置上还没有缓存过方法,同样需要返回该bucket_t,用于中止缓存查询。
            return &b[I];
        }
    } while ((i = cache_next(i, m)) != begin);
    
    // 这一步其实相当于 i = i-1,回到上面do循环里面,相当于查找散列表上一个单元格里面的元素,再次进行key值 k的比较,
    //当i=0时,也就i指向散列表最首个元素索引的时候重新将mask赋值给i,使其指向散列表最后一个元素,重新开始反向遍历散列表,
    //其实就相当于绕圈,把散列表头尾连起来,不就是一个圈嘛,从begin值开始,递减索引值,当走过一圈之后,必然会重新回到begin值,
    //如果此时还没有找到key对应的bucket_t,或者是空的bucket_t,则循环结束,说明查找失败,调用bad_cache方法。
 
    // 
    Class cls = (Class)((uintptr_t)this - offsetof(objc_class, cache));
    cache_t::bad_cache(receiver, (SEL)k, cls);
}

incrementOccupied occupied占用+1

void cache_t::incrementOccupied() 
{
    _occupied++;
}

cache验证

1.新建类

//  TWPerson.h
#import 

NS_ASSUME_NONNULL_BEGIN

@interface TWPerson : NSObject

- (void)talk1;

- (void)talk2;

- (void)talk3;

@end


//  TWPerson.m
#import "TWPerson.h"
@implementation TWPerson

- (void)talk1 {
    NSLog(@"%s", __func__);
}

- (void)talk2 {
    NSLog(@"%s", __func__);
}

- (void)talk3 {
    NSLog(@"%s", __func__);
}

@end

2.调用和断点位置


断点调试.png

3.lldb调试,在每个断点处打印调试结果

2020-01-02 16:04:28.414128+0800 TWDemo[35887:282758] Hello, World!
2020-01-02 16:04:28.414324+0800 TWDemo[35887:282758] -[TWPerson talk1]//断点1
(lldb) x/4gx p.class
0x1000012b0: 0x001d800100001289 0x0000000100b34140
0x1000012c0: 0x0000000101a29050 0x0000000300000003
(lldb) p (cache_t *)0x1000012c0
(cache_t *) $1 = 0x00000001000012c0
(lldb) p $1[0]
(cache_t) $2 = {
  _buckets = 0x0000000101a29050
  _mask = 3
  _occupied = 3
}
(lldb) p $2._buckets[0]
(bucket_t) $3 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[1]
(bucket_t) $4 = {
  _key = 4294971209
  _imp = 0x0000000100000d40 (TWDemo`-[TWPerson talk1] at TWPerson.m:16)
}
(lldb) p $2._buckets[2]
(bucket_t) $5 = {
  _key = 4309412966
  _imp = 0x00000001003c7f90 (libobjc.A.dylib`::-[NSObject class]() at NSObject.mm:1988)
}
(lldb) p $2._buckets[3]
(bucket_t) $6 = {
  _key = 140735242647635
  _imp = 0x00000001003c8300 (libobjc.A.dylib`::-[NSObject respondsToSelector:](SEL) at NSObject.mm:2046)
}
(lldb) p $2._buckets[4]
(bucket_t) $7 = {
  _key = 1
  _imp = 0x0000000101a29050 (0x0000000101a29050)
}
(lldb) p $2._buckets[45]
(bucket_t) $8 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[5]
(bucket_t) $9 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[6]
(bucket_t) $10 = {
  _key = 0
  _imp = 0x0000000000000000
}
2020-01-02 16:05:45.153536+0800 TWDemo[35887:282758] -[TWPerson talk2]//断点2
(lldb) p $2._buckets[0]
(bucket_t) $11 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[1]
(bucket_t) $12 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[2]
(bucket_t) $13 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[3]
(bucket_t) $14 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[4]
(bucket_t) $15 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[5]
(bucket_t) $16 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[6]
(bucket_t) $17 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[7]
(bucket_t) $18 = {
  _key = 4294971215
  _imp = 0x0000000100000d70 (TWDemo`-[TWPerson talk2] at TWPerson.m:20)
}
(lldb) p $2._buckets[8]
(bucket_t) $19 = {
  _key = 1
  _imp = 0x0000000101f349f0 (0x0000000101f349f0)
}
(lldb) p $2._buckets[9]
(bucket_t) $20 = {
  _key = 0
  _imp = 0x0000000000000000
}
2020-01-02 16:06:23.964333+0800 TWDemo[35887:282758] -[TWPerson talk3]//断点3
(lldb) p $2._buckets[0]
(bucket_t) $21 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[1]
(bucket_t) $22 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[2]
(bucket_t) $23 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[3]
(bucket_t) $24 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[4]
(bucket_t) $25 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[5]
(bucket_t) $26 = {
  _key = 4294971221
  _imp = 0x0000000100000da0 (TWDemo`-[TWPerson talk3] at TWPerson.m:24)
}
(lldb) p $2._buckets[6]
(bucket_t) $27 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[7]
(bucket_t) $28 = {
  _key = 4294971215
  _imp = 0x0000000100000d70 (TWDemo`-[TWPerson talk2] at TWPerson.m:20)
}
(lldb) p $2._buckets[8]
(bucket_t) $29 = {
  _key = 1
  _imp = 0x0000000101f349f0 (0x0000000101f349f0)
}
(lldb) p $2._buckets[9]
(bucket_t) $30 = {
  _key = 0
  _imp = 0x0000000000000000
}
(lldb) p $2._buckets[10]
(bucket_t) $31 = {
  _key = 140735685066801
  _imp = 0x00007fff9484c250 ((void *)0x00007fff37421928)
}
2020-01-02 16:07:23.480901+0800 TWDemo[35887:282758] 
Program ended with exit code: 0

分析
通过调试,在断点1处打印的时候,可以找到talk1方法,断点2处,可以找到talk2方法但是没有talk1方法,断点3处,可以找到talk2和talk3方法,但是没有talk1方法,因为在调用talk2的时候,缓存超出容量,进行了扩容,清除之前的缓存填充新的缓存导致的。

附上流程图:

cache_t流程图.png

你可能感兴趣的:(iOS底层 cache_t分析)