- 使用GPU进行机器学习训练时,如果GPU-Util计算核心满载工作但是显存占用较少,应该如何优化?
十子木
机器学习深度学习人工智能
是否需要优化?如果任务运行正常:无需干预(GPU设计本就是优先榨干计算性能)。如果出现卡顿或效率低下:增大batch_size:提升显存占用,减少数据搬运次数(但需避免OOM)。启用混合精度:torch.cuda.amp可减少显存占用并加速计算。检查CPU到GPU的数据流:避免频繁的小数据拷贝(如DataLoader的num_workers设置)。
- DAY 40 训练和测试的规范写法
acstdm
python打卡60天人工智能深度学习机器学习
目录一、单通道图片的规范写法图像任务中的张量形状NLP任务中的张量形状1.Flatten操作2.view/reshape操作总结二、彩色图片的规范写法知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout昨天我们介绍了图像数据的格式以及模型定义的过程,发现和之前
- DAY 45 Tensorboard使用介绍
HINOTOR_
Python训练营python开发语言
目录DAY45Tensorboard使用介绍1.tensorboard的发展历史和原理2.tensorboard的常见操作3.tensorboard在cifar上的实战:MLP和CNN模型作业:对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。DAY45Tensorboard使用介绍1.tensorboard的发展历史和原理2.tensorboard的常见操
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- 【硬核拆解】英伟达Blackwell芯片架构如何重构AI算力边界?
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、Blackwell诞生的算力危机(2025现状)graphTDA[2025年AI算力需求]-->B[千亿参数模型训练能耗>20GWh]A-->C[10万亿参数模型涌现]A-->D[传统架构内存墙:数据搬运耗能占68%]行业拐点事件:2025年3月:OpenAI宣布训练125万亿参数MoE模型
- 华为认证二选一:物联网 VS 人工智能,你的赛道在哪里?
博睿谷IT99_
物联网人工智能华为华为认证
一篇不讲情怀只讲干货的科普指南一、华为物联网&人工智能到底在搞什么?华为物联网(IoT)的核心是“万物互联”。通过传感器、通信技术(如NB-IoT/5G)、云计算平台(如OceanConnect),将物理设备(车、路灯、工厂机器)连入网络,实现数据采集、远程控制和智能决策。大白话就是:它让哑巴设备学会“说话”。华为人工智能(AI)的核心是“让机器学会思考”。聚焦大模型训练、部署与应用(如昇腾AI解
- KANN 是一个独立的轻量级 C 语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括 LSTM 和 GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归等
一、软件介绍文末提供程序和源码下载KANN是一个独立的轻量级C语言库,用于构建和训练中小型人工神经网络,例如多层感知器、卷积神经网络和递归神经网络(包括LSTM和GRU)。它实现了基于图的逆模自动微分,并允许构建具有递归、共享权重和多个输入/输出/成本的拓扑复杂神经网络。与TensorFlow等主流深度学习框架相比,KANN的可扩展性较低,但它的灵活性接近,代码库要小得多,并且仅依赖于标准C库。与
- 无需多卡集群,单卡运行扩散模型的技术突破与实践
源客z
stablediffusion
近年来,扩散模型(DiffusionModels)在图像、视频、3D生成等领域取得巨大进展。然而,传统扩散模型往往依赖多卡集群(如8×A100)进行高效训练与推理,这使得个人开发者和中小团队的应用受限。幸运的是,随着模型架构优化、量化技术、推理加速方案的发展,越来越多的开源扩散模型可以在单张消费级显卡(如RTX4090、T4、A6000)上运行,并且性能接近或超越原生大规模模型。本文整理了当前可在
- 易语言实现钉钉PC端高频率链接批量打开系统
神经网络697344
开发语言开发工具网络钉钉matlab开发语言算法信息可视化机器学习
易语言实现钉钉PC端高频率链接批量打开系统一、需求分析与技术方案核心需求:在钉钉PC端私聊消息中嵌入特殊格式链接用户点击后通过自定义协议唤醒本地程序支持每分钟处理10万次请求的批量操作实现链接的批量生成和管理技术方案:发送加密链接钉钉客户端协议拦截器链接解析引擎批量处理队列线程池控制器浏览器操作模块
- C语言教学大变革!DeepSeek如何改变高职院校编程课堂?
武汉唯众智创
c语言开发语言程序设计Deepseek
一、引言在当今数字化转型的浪潮中,程序设计与分析能力已成为高职教育中不可或缺的核心竞争力。作为编程语言的基础,C语言不仅训练学生的计算思维,还培养其算法实现能力。然而,当前高职院校的C语言教学面临诸多挑战,如实践环节薄弱、学生创新能力不足等。DeepSeek等新一代智能编码支持系统的出现,为这一现状带来了转机。该系统融合了深度神经网络与语义解析技术,能够智能生成代码、优化缺陷检测、解构程序逻辑,并
- 【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
Akttt
T2I计算机视觉人工智能text2img深度学习
CODE:2309https://github.com/StevenShaw1999/RnBABSTRACT近期的文本到图像(T2I)扩散模型在以文本提示作为输入生成高质量图像方面取得了显著进展。然而,这些模型无法传达布局指令所指定的合适空间构图。在这项工作中,我们探索了使用扩散模型进行零样本接地T2I生成,即无需训练辅助模块或微调扩散模型就能生成与输入布局信息相对应的图像。我们提出了一种区域与边
- 【HDMI CEC】One Touch Record 功能详解
好多渔鱼好多
HDMICECCEC协议HDMICEC智能家居影音开发
目录1.概念2.用途3.实现原理3.1实现流程3.2关键点总结4.协议命令与运用流程5.运用示例6.注意事项7.设备设置与检查8.经验总结1.概念OneTouchRecord(OTR)是HDMICEC协议中一项旨在简化录制操作的功能。它允许用户仅通过在电视(或作为控制中心的设备)的遥控器上按一个特定的录制按钮(通常是“Record”或“Rec”),就能自动唤醒并命令指定的录制设备(如硬盘录像机DV
- 在浏览器中使用TensorFlow.js
魏铁锤chui
tensorflowjavascript人工智能
TensorFlow.js简介介绍光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。TensorFlow.js是一个库,用于使用JavaScript开发和训练机器学习模型,并将其部署在浏览器中或Node.js上。您可以使用现有模型、转换PythonTensorFlow模型、使用迁移学习用您自己的
- pytorch底层原理学习--PyTorch 架构梳理
xinxiangwangzhi_
深度学习pytorch架构人工智能
文章目录PyTorch完整架构流程图关键组件详解完整执行流程示例PyTorch架构梳理PyTorch完整架构流程图硬件层后端层C++部署层核心引擎(libtorchC++)绑定层Python层加载调用训练模式编译模式推理模式生成CPUGPUCPUKernelsCUDAKernelsC++代码torch::jit::load('model.pt')module.forward(inputs)libt
- 如何在pytorch中使用tqdm:优雅实现训练进度监控
Ven%
简单入门pytorchpytorch人工智能python
文章目录为什么需要进度条?tqdm简介基础用法示例深度学习中的实战应用1.数据加载进度监控2.训练循环增强版3.验证阶段集成高级技巧与最佳实践1.自定义进度条样式2.嵌套进度条(多任务)3.分布式训练支持4.与日志系统集成性能优化建议完整训练流程示例常见问题解决方案总结掌握训练进度监控是深度学习工程师的基本功。本文将带你从零开始,深入探索如何用tqdm为深度学习训练添加专业级进度条。为什么需要进度
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- 如何禁止GPTBot等爬虫爬取网站内容:保护数据安全的实用指南
淮橘√
人工智能
引言随着人工智能技术的快速发展,网络爬虫(如OpenAI的GPTBot、GoogleBot、Anthropic的ClaudeBot等)被广泛用于抓取网站数据以训练AI模型或索引内容。然而,部分网站管理员可能不希望自己的内容被爬虫抓取,原因包括保护原创内容、降低服务器负载或防止数据被滥用。一、为什么需要禁止爬虫?网络爬虫可能带来以下问题:内容盗用风险:原创内容可能被AI模型或其他服务未经授权使用。服
- java opencv 数字识别算法_[机器学习]基于OpenCV实现最简单的数字识别
后期小雨
javaopencv数字识别算法
本文将基于OpenCV实现简单的数字识别。这里以游戏AngryBirds为例,通过以下几个主要步骤对其中右上角的分数部分进行自动识别。1.学习分类器根据训练样本,选取模型训练产生数字分类器。这里的样本可以是通用的数字样本库(如NIST等),也可以是针对应用场景而制作的专门训练样本。前者优在泛化性,后者强在准确率,当然常用做法是将这两者结合,即在通用数字库基础上做修改。另外这里由于模式并不复杂,计算
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- Keras环境复现代码(二)
yanyiche_
Keras机器学习人工智能
PPOCartPole控制算法实践实验要求明确实验目的:学习和实现PPO算法,这是一种改进的策略梯度方法,通过限制策略更新的幅度来提高训练的稳定性。清楚实验原理:PPO算法是一种基于策略梯度的强化学习算法,它旨在解决传统策略梯度方法(如REINFORCE算法)在训练过程中可能出现的策略更新不稳定问题。PPO算法通过引入一种新的策略更新机制,限制每次更新的幅度,从而提高训练的稳定性和效率。PPO算法
- WIFI 低功耗保活知识系列---七.WiFi芯片休眠保活任务--IP续租
悟空胆好小
tcp/ip网络网络协议人工智能嵌入式硬件机器学习
WIFI低功耗保活知识系列—七.WiFi芯片休眠保活任务–IP续租文章目录WIFI低功耗保活知识系列---七.WiFi芯片休眠保活任务--IP续租**一、基础方法:重启Wi-Fi连接触发DHCP**⚙️**二、底层控制:直接调用LwIPDHCPAPI****三、高级场景:自定义DHCP报文构造**⚠️**四、关键实践建议**五.总结WiFi芯片休眠保活任务除了前面讲述的,1.低功耗模式下与路由器A
- 【LLaMA 3实战:检索增强】13、LLaMA 3+RAG精准问答系统优化全指南:从检索增强到可信度提升实战
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型LLaMa3实战程序员的AI开发第一课AI入门
一、RAG赋能LLaMA问答系统的核心价值与瓶颈突破(一)准确性提升的三大核心挑战问题类型典型表现传统方案局限RAG+LLaMA3解决方案知识滞后型错误回答包含过时技术细节依赖模型预训练更新动态检索最新文档库上下文误解曲解问题意图或检索内容固定分块导致语义断裂语义感知分块+动态查询扩展事实幻觉虚构不存在的概念或数据缺乏外部事实校验溯源标注+多模型交叉验证(二)RAG与LLaMA3的协同优势动态知识
- StackGAN(堆叠生成对抗网络)的介绍
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- 经典文生图的GAN模型-HDGAN介绍
这张生成的图像能检测吗
GAN系列生成对抗网络人工智能神经网络计算机视觉深度学习机器学习
简介简介:这篇论文提出了一种名为HDGAN(Hierarchically-nestedDiscriminatorsGAN)的新方法,用于解决文本到图像合成这一挑战性任务。该方法的主要创新点包括:分层嵌套对抗目标:在网络层次结构内部引入配套的分层嵌套对抗目标,正则化中层表示并辅助生成器训练单流生成器架构:提出可扩展的单流生成器架构,更好地适应联合鉴别器并将生成图像提升到高分辨率多目的对抗损失:采用多
- StackGAN(堆叠生成对抗网络)
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习算法
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- C++信号量condition_variable
目录1、condition_variable2、函数3、测试1、condition_variable同步线程间的数据流依赖关系。2、函数Condition_variablecv;构造Cv.~Condition_variable();销毁Cv.notify_one();唤醒一个等待者Cv.notify_all();唤醒所有的等待者Cv.wait(ul);使用unique_lockul来等待通知Cv.
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1