- Objective-C语言的数据库交互
Code花园
包罗万象golang开发语言后端
Objective-C语言的数据库交互引言在现代应用程序开发过程中,数据库在数据存储和管理方面起着至关重要的作用。对于iOS应用开发者而言,掌握如何在Objective-C中与数据库交互显得尤为重要。本文将全面探讨Objective-C的数据库交互,包括SQLite的基本用法、数据模型的设计、常用的数据库操作及在实际应用中的综合示例。1.数据库基础在深入Objective-C的数据库交互之前,我们
- vue3 + echarts5.4.3 实现3D省份地图【动态icon】
和生活比个Y
3d
vue3+echarts5.4.3实现3D省份地图【动态icon】vue3项目+echarts5.4.3实现效果:1.下载echarts插件2.按需引入echarts插件3.复制省份json文件1.[查找省份/全国的json文件的地址:](https://datav.aliyun.com/portal/school/atlas/area_selector)2.当前页面中引入刚才复制的json文件4
- 【Cursor】如何在Cursor试用期结束后继续使用?全方位指南!
ChatGPT-千鑫
AI领域人工智能chatgptcodemoss
Cursor的强大功能Cursor不仅是一款简单的编程工具,它还集成了当前最先进的AI模型——Claude3.5和GPT-4。这意味着用户不仅可以利用它编写代码,还能够与AI模型进行互动,实时获取编程建议和解决方案。无论你是刚入门的编程新手,还是经验丰富的开发者,Cursor都能为你提供极大的支持与帮助。如何免费无限使用Cursor1.利用14天免费试用Cursor为新用户提供14天的免费试用期。
- 【人工智能】人工智能的10大算法详解(优缺点+实际案例)
ChatGPT-千鑫
人工智能人工智能算法gpt-3AI编程gptcodemoss能用AI
人工智能(AI)是现代科技的重要领域,其中的算法是实现智能的核心。本文将介绍10种常见的人工智能算法,包括它们的原理、训练方法、优缺点及适用场景。1.线性回归(LinearRegression)模型原理线性回归用于建立自变量(特征)与因变量(目标)之间的线性关系。其目标是寻找最佳拟合直线,使得预测值与实际值之间的误差最小化。模型训练通过最小二乘法来最小化预测值与真实值之间的误差,得到线性回归方程的
- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLO大师
YOLO网络cnn目标检测论文阅读yolov8
YOLOv8目标检测创新改进与实战案例专栏专栏目录:YOLOv8有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv8基础解析+创新改进+实战案例介绍摘要视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸
- 如何利用OpenCV和yolo实现人脸检测
音视频牛哥
大牛直播SDKopencv人工智能计算机视觉yolo11人脸检测opencv人脸检测yolo人脸检测
在之前的blog里面,我们有介绍OpenCV和yolo的区别,本文就人脸检测为例,分别介绍下OpenCV和yolo的实现方式。OpenCV实现人脸检测一、安装OpenCV首先确保你已经安装了OpenCV库。可以通过以下方式安装:使用包管理工具安装:在Python环境中,可以使用pip安装:pipinstallopencv-python。二、加载预训练的人脸检测模型OpenCV提供了基于Haar特征
- 拿下美赛M奖之必备软件和网站!
东方建模.
数学建模
目录前言:一.题目翻译与理解:DeepL+知云文献翻译二.查找文献:国内外平台结合使用三.论文撰写:Word或LaTeX+Overleaf四.公式输入与思维导图:MathType+XMind五.阅读文献与文献管理:AdobeReader+Zotero六.模型求解与编程:MATLAB+Python+Lingo七.图形绘制与结果可视化:MATLAB+Python+Origin八.流程图与示意图:亿图图
- 基于YOLOv8深度学习的人脸年龄检测识别系统
2025年数学建模美赛
YOLO深度学习人工智能ui数据挖掘分类
引言随着人工智能和计算机视觉的飞速发展,人脸分析技术在年龄检测领域取得了显著进展。人脸年龄检测系统在安全监控、广告推荐、健康监测等领域有广泛应用。本文将基于YOLOv8目标检测模型和UI界面,开发一个完整的人脸年龄检测识别系统。我们将详细介绍项目的技术实现、数据集构建、模型训练以及UI设计,并附上完整代码。目录引言系统架构设计数据准备公开人脸年龄数据集数据标注格式数据目录结构模型训练YOLOv8环
- 基于深度学习的人脸表情识别系统(YOLOv10+UI界面+数据集)
2025年数学建模美赛
深度学习YOLOui计算机视觉人工智能目标跟踪
在本篇博客中,我们将详细介绍如何构建一个基于深度学习的人脸表情识别系统。该系统主要由三部分组成:YOLOv10(深度学习模型)进行表情识别、UI界面展示识别结果以及数据集的准备和训练过程。我们将从系统架构、数据准备、模型训练、UI设计等多个方面进行全面讲解,最终实现一个能够实时识别并展示人脸表情的系统。目录1.系统架构2.数据集准备2.1FER2013数据集2.2数据预处理3.YOLOv10模型概
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- 我的秋招总结
今天不coding
秋招秋招总结大厂秋招建议秋招准备
我的秋招总结个人背景双非本,985硕,科班准备情况以求职为目的学习Java的时间大概一年。八股,一开始主要是看B站黑马的八股文课程,背JavaGuide和小林coding还有面试鸭。算法,250+,刷了3遍左右项目,API开放平台+OJ在线判题系统+实习项目(检索+大模型)实习,华为线上算法实习4个月,小厂Java实习5个月,滴滴后端实习9个月offer京东零售-供应链sp美团到家-履约sp快手-
- 《鸿蒙Next旅游应用:人工智能赋能个性化与智能导览新体验》
人工智能深度学习
随着鸿蒙Next的推出,旅游应用迎来了全新的发展机遇,借助人工智能技术能为用户带来更出色的个性化推荐和智能导览服务。鸿蒙Next与人工智能融合优势鸿蒙Next拥有强大的分布式能力和原生智能体验。其能打破设备界限,实现多设备协同,让用户在手机、平板、智能手表等设备上无缝使用旅游应用。同时,依托华为强大的AI技术和自研的“盘古”大模型,为旅游应用提供了强大的智能支持。个性化推荐实现方式用户数据收集与分
- 计算机网络部分笔记
白茶三许
计算机网络笔记网络
计算机网络OSI/RM七层模型七层模型是计算机网络的一个奠基石。计算机网络整个的基础都是构建于七层模型之上的。七层模型是由国际标准化组织制定出来的。在七层模型当中最底层是物理层。物理层负责传输二进制的数据,主要涉及的设备是中继器和集线器。中继器可以延长传输距离,因为传输距离过远,会导致信号的衰减,衰减到一定程度就传输不过去了,而通过在中间加一个中继器,中继器一端接收传输过来的数据,另一端将数据原封
- 《解锁鸿蒙系统AI能力,开启智能应用开发新时代》
人工智能深度学习
在当今科技飞速发展的时代,鸿蒙系统以其独特的分布式架构和强大的AI能力,为开发者们带来了前所未有的机遇。本文将深入探讨开发者如何利用鸿蒙系统的AI能力开发更智能的应用,开启智能应用开发的新时代。鸿蒙系统构筑了15+系统级的AI能力,并开放了14+AI控件,覆盖图像、语音、智能推荐等领域。这意味着开发者无需从头搭建复杂的AI模型和算法,只需通过低至“一行代码”调用系统级原生AI能力,如文本识别、视觉
- 《解锁数据新动能:数据标注工具与AI模型训练平台的无缝对接热潮》
人工智能深度学习
在当今人工智能飞速发展的时代,数据已然成为驱动其进步的核心燃料。而数据标注工具与人工智能模型训练平台的集成,实现数据的无缝流转,正逐渐成为行业内的关键热点,犹如为人工智能的发展装上了强劲的双引擎。为何集成如此关键数据标注是为数据赋予标签,使其能被人工智能模型理解和学习的过程。训练平台则是利用这些标注好的数据来构建和优化模型。两者若相互独立运作,数据在不同系统间的传输会面临格式不兼容、接口不匹配等难
- “越用越上瘾”,中华财险 60% 研发人员用通义灵码提效
云原生
保险业被看成是社会“稳定器”和经济“助推器”,近年来已驶入数字化发展快车道。在AI、大模型当道的今天,保险行业的研发流程、产品设计、场景拓展等业务链条各环节,都值得用大模型进行重塑。日前,中华联合财产保险股份有限公司(以下简称“中华财险”)创新研发中心副总经理汤密力在阿里云“云故事探索”栏目中,介绍了“云+大模型”如何为这家老牌金融机构的业务创新注入新动力。据汤密力介绍,通过使用通义灵码,中华财险
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 《数据质量:人工智能模型的成败关键》
人工智能深度学习
在当今人工智能飞速发展的时代,数据质量对人工智能模型的影响至关重要,它直接关系到模型的性能、准确性和可靠性。以下是对这一问题的详细探讨。影响模型的准确性数据准确性的作用:准确的数据是模型准确输出的基础。如果数据中存在错误、偏差或噪声,模型就会学习到这些错误信息,从而导致预测结果不准确。例如在医疗诊断模型中,若患者的症状数据记录错误,模型可能会给出错误的诊断建议。数据完整性的影响:不完整的数据会使模
- 云起无垠荣获第八届“强网杯”高阶技术专项赛优秀奖
网络安全
近日,第八届“强网杯”全国网络安全挑战赛线下赛于郑州高新区的网络安全科技馆赛博厅圆满落幕。云起无垠创始人兼CEO沈凯文博士在活动中发表了题为《安全智能体技术实践与内生安全问题思考》的精彩演讲。沈凯文博士指出,当前数字化时代下网络安全领域面临深刻变革与挑战,AI的快速发展使其成为网络安全创新的核心动力,促使安全智能体出现。但大模型在安全场景落地时存在诸多难题,为此云起无垠构建了AI安全智能体平台。该
- 产品解读 | 无涯问知AI PC开启个人大模型应用新篇章
人工智能大模型
星环科技推出无涯问知AIPC版,这是一款专为个人用户设计的大模型应用产品,标志着个人智能应用时代的全面展开。无涯问知AIPC版基于星环科技先进的大模型技术,可以在配备英特尔®酷睿™Ultra的主流个人电脑上,基于集成显卡和NPU流畅运行。它不仅具备强大的本地化向量库,支持多格式、不限长度的文件资料入库,还支持影、音、图、文等多模态数据的“知识化”处理,以及“语义化”查询和应用能力,极大地丰富了知识
- C# Linq 多表查询
鹿人甲丁
.netc#linq
在C#中处理数据时,语言集成查询(LINQ)是一个强大的工具,它允许我们以类似于数据库查询的方式查询集合。LINQ进行多表查询,包括内连接、组连接、左连接和交叉连接。基础数据模型首先定义几个基础的数据模型类://学生publicclassStudent{publicintStudentId{get;set;}publicstringName{get;set;}}//班级publicclassCla
- 智能数据时代:如何优化数仓模型的复用性
Python编程杰哥
llama人工智能easyui前端设计模式
在数仓岗位面试中,相信很多同学都频繁被问到“模型复用性”相关面试题。这个也是很多企业数仓建设中非常关注的问题,因为在企业数仓建设中数仓模型的复用性,更是有着多方面的关键意义。数仓模型复用性的价值1.1提高开发效率在互联网金融信贷数仓建设中,面临着快速变化的业务需求和海量的数据处理任务。如果数仓模型的复用性低,每次新的业务需求出现时,开发人员都需要从头开始构建数据处理流程和模型,这将耗费大量的时间和
- 基于Simulink的SVPWM控制的DC-AC变换器H桥逆变器
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏simulink
目录基于Simulink的SVPWM控制的DC-AC变换器H桥逆变器项目实例1.项目背景2.系统架构2.1DC电源2.2H桥逆变器2.3SVPWM控制器2.4滤波器2.5系统框图3.模型设计3.1创建Simulink模型3.2SVPWM控制策略设计3.3仿真环境搭建3.4仿真结果分析4.SVPWM控制策略的详细实现4.1扇区判断逻辑4.2作用时间计算4.3开关序列生成5.滤波器设计与优化5.1滤波
- 如何设计一款分布式数据库
借雨醉东风
热点追踪分布式
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- 【机器学习】聚类【Ⅰ】基础知识与距离度量
不牌不改
【机器学习】聚类机器学习算法
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。有任何的书写错误、排版错误、概念错误等,希望大家包含指正。由于字数限制,分成五篇博客。【机器学习】聚类【Ⅰ】基础知识与距离度量【机器学习】聚类【Ⅱ】原型聚类经典算法【机器学习】聚类【Ⅲ】高斯混合模型讲解【机器学习】聚类【Ⅳ】高斯混合模型数学推导【机器学习】聚类【Ⅴ】密度聚类与层次聚类聚类1聚类任务在“无
- 第83期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- AI大模型应用架构(ALLMA)白皮书解读
百度_开发者中心
人工智能大模型数据库自然语言处理
随着人工智能技术的不断发展,AI大模型成为推动生产、生活方式变革,助推产业智能化转型升级,驱动数字经济高质量发展等社会经济发展方面的新引擎。为了全面展示AI大模型的发展全貌,为各界提供新思路,本文将对AI大模型应用架构(ALLMA)白皮书进行解读。一、AI大模型应用架构(ALLMA)的内涵AI大模型应用架构(ALLMA)是一种基于深度学习的人工智能应用架构,旨在通过大规模无标注数据预训练、指令微调
- next-auth v5 结合 Prisma 实现登录与会话管理
曹天骄
javascript
1.安装依赖npminstallnext-authprisma@prisma/client2.配置Prisma模型在prisma/schema.prisma文件中定义User和Account模型(next-authv5推荐使用自定义模型)。modelUser{idString@id@default(uuid())emailString@uniquenameString?imageString?ha
- 15款UML建模工具最近更新-2025年1月统计
rolt
建模带来竞争优势EnterpriseArchitectUML产品经理架构师
DDD领域驱动设计批评文集做强化自测题获得“软件方法建模师”称号《软件方法》各章合集工具最新版本:SinelaboreRT6.5更新时间:2025年1月5日工具简介状态机图和活动图代码生成工具。先在EA、VisualParadigm、Cadifra、UModel、MagicDraw、Papyrus、ArgoUML、StarUML、DrawIO等UML建模工具中建立状态机模型,然后导出为XMI文件。
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1