- 大模型(含deepseek r1)本地部署利器ollama的API操作指南
人工智能llm
ollama介绍:Ollama是一个开源的大型语言模型(LLM)平台,旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。它支持多种预训练的大型语言模型(如LLaMA2、Mistral、Gemma、DeepSeek等),并提供了一个简单高效的方式来加载和使用这些模型。出现Error:somethingwentwrong,pleaseseetheollamaserverlogsfordet
- LLM的分布式部署:AI的云端革命
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《LLM的分布式部署:AI的云端革命》关键词分布式部署语言模型云端计算资源管理性能优化安全性摘要本文将深入探讨大型语言模型(LLM)的分布式部署,分析其技术背景、架构设计、资源管理、性能优化以及安全性等方面。通过对LLM分布式部署的关键技术进行详细介绍,我们旨在为读者提供一个全面、系统的理解,以及展望未来LLM分布式部署的发展趋势。目录大纲第一部分:分布式部署概述第1章:分布式系统基础第2章:LL
- auto-gptq安装以及不适配软硬件环境可能出现的问题及解决方式
IT修炼家
大模型部署大模型auto-gptqcuda
目录1、auto-gptq是什么?2、auto-gptq安装3、auto-gptq不正确安装可能会出现的问题(1)爆出:`CUDAextensionnotinstalled.`(2)没有报错但是推理速度超级慢1、auto-gptq是什么?Auto-GPTQ是一种专注于量化深度学习模型的工具库。它的主要目标是通过量化技术(Quantization)将大型语言模型(LLM)等深度学习模型的大小和计算复
- LLM与知识图谱融合:智能运维知识库构建
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,IT运维管理面临着越来越大的挑战。海量的设备、复杂的网络环境、日益增长的数据量,使得传统的运维方式难以满足需求。为了提高运维效率和质量,智能运维应运而生。智能运维的核心是将人工智能技术应用于运维领域,通过机器学习、深度学习等算法,实现自动化、智能化的运维管理。其中,大语言模型(LLM)和知识图谱是两个重要的技术方向。LLM能够理解和生成自然语言,可以用于构建智能
- 知识图谱构建:LLM与知识工程的完美结合
AI智能涌现深度研究
AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1知识爆炸与信息孤岛随着互联网和信息技术的飞速发展,我们正处于一个知识爆炸的时代。海量的数据和信息充斥着我们的生活,但同时也带来了信息过载和信息孤岛的问题。传统的信息检索方式难以有效地组织和利用这些知识,难以满足人们对知识获取和应用的需求。1.2知识图谱的兴起知识图谱作为一种语义网络,能够将实体、概念及其之间的关系以结构化的方式进行表达和存储,从而有效地组织和管理知识。近年来,知识
- Python中LLM的知识图谱构建:动态更新与推理
二进制独立开发
GenAI与Python非纯粹GenAIpython知识图谱开发语言自然语言处理人工智能分布式机器学习
文章目录引言1.知识图谱的基本概念1.1知识图谱的定义1.2知识图谱的构建流程2.利用LLM进行知识抽取2.1实体识别2.2关系抽取2.3属性抽取3.知识融合3.1实体对齐3.2冲突消解4.知识存储5.知识推理5.1规则推理5.2基于LLM的推理6.动态更新6.1增量更新6.2实时更新7.结论引言随着人工智能技术的飞速发展,知识图谱(KnowledgeGraph,KG)作为一种结构化的知识表示方法
- Fastgpt接入Whisper本地模型实现语音识别输入
泰山AI
AI大模型应用开发AI语音模型gptragfastgpt
前言FastGPT默认使用了OpenAI的LLM模型和语音识别模型,如果想要私有化部署的话,可以使用openai开源模型Whisper。参考文章《openai开源模型Whisper语音转文本模型下载使用》FastGPT接入本地AI语音TTS首先打开one-api网址添加一个自定义渠道设置BaseUrl、模型、鉴权等信息BaseUrl为你部署本地语音识别web项目baseurl,图标上的是以我写的开
- LLM论文笔记 14: The Impact of Positional Encoding on Length Generalization in Transformers
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2023.12.15机构:McGillUniversity/IBM/Facebook/ServiceNow关键词长度泛化位置编码CoT核心结论1.decoder-only中不显式使用位置编码(NoPE)可以提高长度泛化性能2.(证明了)decoder-onlytransformer如果NoPE同时具备绝对APE和RPE的能力3.暂存器(cot)对于长度泛化和任务相关,同时关注短期和
- 【拥抱AI】一文讲清楚MCP(Model Context Protocol)核心功能及应用
奔跑草-
人工智能人工智能LLM自然语言处理MCPFunctioncall
什么是MCP(ModelContextProtocol)?MCP(ModelContextProtocol)是Anthropic推出的一个开放协议,旨在统一LLM应用与外部数据源和工具之间的通信协议,为AI开发提供了标准化的上下文交互方式。MCP的主要功能包括数据集成、工具集成、模板化交互、安全性、开发者支持、预构建服务器和上下文维护。它通过客户端-服务器架构,支持多个服务连接到任何兼容的客户端,
- Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
UnknownBody
LLMDailyLLMcontext语言模型人工智能
本文是LLM系列文章,针对《LeaveNoContextBehind:EfficientInfiniteContextTransformerswithInfini-attention》的翻译。不让任何上下文掉队:无限关注的高效无限上下文Transformer摘要1引言2方法3实验4相关工作5结论摘要这项工作介绍了一种将基于Transformer的大型语言模型(LLM)扩展到具有有限内存和计算的无限
- AnythingLLM 项目安装与配置指南
龙聪山Diane
AnythingLLM项目安装与配置指南anything-llm为开源和闭源的大型语言模型(LLMs)、嵌入器和向量数据库提供开源的ChatGPT体验。在一个应用中提供无限的文档、消息和并发用户,以及权限管理。项目地址:https://gitcode.com/gh_mirrors/an/anything-llm1.项目基础介绍和主要编程语言AnythingLLM是一个全栈应用程序,旨在帮助用户将任
- wav2lip部署方案-数字人项目
何为标准
python
该项目商用需要通过原作者原作者github链接说明该项目可以将语音和视频或图片结合生成数字人。大家多关注,后续会把llm、RAG、AGENT、TTS、ASR等结合起来,形成一套完整的系统显卡硬件资源显卡:2080ti开始部署下载源码gitclonehttps://github.com/Rudrabha/Wav2Lipcd/root/Wav2Lippipinstall-rrequirements.t
- 使用 LLM 实现的 RSS 个性信息推送,效果实测 day2
每天早上,我都会点开coze推送的RSS邮件,经常能找到感兴趣的有用信息。因为铺天盖地的deepseek,蹭热点的文章很多,我往往只瞄一眼标题今天出现了这么3条信息,实在开心嵌入式那条,原因是我最近笔记里写了nRF的开发配置,我正在被zephyr开发工具链折磨。工作记忆那一条,跟我最近《学习的门道》读书笔记有关隐私优先那一条,跟我跟xBeta讨论笔记工具有关每天推送的邮件让人期待的感觉真好。
- ChatGPT-4o:不止是升级,是AI的“人性”觉醒?
m0_74308707
人工智能chatgptgptaiAI编程AI写作
王者归来:ChatGPT-4o重夺LLM桂冠在人工智能领域,竞争从未停止。各大科技巨头纷纷推出自家的大语言模型,试图在这一领域占据领先地位。而OpenAI的ChatGPT系列,始终是这场竞赛中最耀眼的明星之一。ChatGPT-4o的发布,无疑再次巩固了OpenAI的领先地位。在权威的ChatbotArenaLLM排行榜上,ChatGPT-4o力压群雄,重回榜首。这份榜单的评估维度涵盖了语言模型的综
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- csghub安装(docker方式)
AR_xsy
docker容器运维
简单介绍:CSGHub是一个开源、可信的大模型资产管理平台,可帮助用户治理LLM和LLM应用生命周期中涉及到的资产官网部署安装exportSERVER_DOMAIN=$(ipaddrshow$(iprouteshowdefault|awk'/default/{print$5}')|grep'inet'|awk'{print$2}'|cut-d/-f1)exportSERVER_PORT=80doc
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- 如何训练LLM“思考”(像o1和DeepSeek-R1一样, 高级推理模型解析
果冻人工智能
AI员工人工智能chatgpt深度学习
2024年9月,OpenAI发布了它的o1模型,该模型基于大规模强化学习训练,赋予了它“高级推理”能力。不幸的是,他们是如何做到这一点的细节从未被公开披露。然而,今天,DeepSeek(一个AI研究实验室)成功复现了这种推理行为,并公开了他们方法的完整技术细节。在这篇文章中,我将讨论这一创新背后的关键思想,并描述它们在底层是如何运作的。一台会思考的笔记本电脑OpenAI的o1模型标志着训练大语言模
- 【大模型】数据集构造方式
油泼辣子多加
深度学习人工智能chatgpt
1.Alpaca数据格式Alpaca数据格式最早由StanfordAlpaca项目提出,目的是用来微调大语言模型(LLM),特别是用于InstructionTuning(指令微调)。它基于Self-Instruct方法,即使用更强大的模型(如OpenAI的GPT-3)来自动生成高质量的指令数据,从而让小型模型也能理解和执行指令任务。数据格式示例Alpaca数据集的格式通常是JSON,包含以下几个字
- 基于GPT一键完成数据分析全流程的AI Agent: Streamline Analyst
Wilson_ZheLIN
gpt4aiagentllms数据分析
大型语言模型(LLM)的兴起不仅为获取知识和解决问题开辟了新的可能性,而且催生了一些新型智能系统,例如旨在辅助用户完成特定任务的AICopilot以及旨在自动化和自主执行复杂任务的AIAgent,使得编程、创作等任务变得高效而条理。在数据科学和可视化方面,非常多家AICopilot通过提供智能提示、建议或辅助决策等手段有效减小了用户的工作量。但是很少有app针对不同种类数据的预处理、建模、可视化等
- AI大模型学习之白话笔记(一)-- GPT和LLM
Langchain
人工智能学习笔记langchainpython机器人大模型
前言2022年底第一次听说chatGPT,从最初的对话,到如今的文生视频Sora,带来的效果,越来越超出我们的想象。在2023年,我尝试去了解GPT可以干什么,有什么作用,该怎么用,不过变化太快,最终也没有找到一个好的方式干进去。为什么变化这么快,说到底,是AI大模型带来的巨变。现在很多大厂都在降薪裁员,也有不少公司在AllinAI,我们都有一个预感,要变天了。你想想,如果有一天,一款游戏的所有美
- 【带你 langchain 双排系列教程】1. langchian 基本架构与环境配置(siliconFlow Deepseek接入)
夜里慢慢行456
langchain
LangChain是一个用于构建和部署大模型应用的框架,涵盖了从语言模型(LLM)到检索增强生成(RAG)、OpenAI集成以及智能体(Agent)的全套工具链。以下是一个简要的LangChain大模型全套教程,帮助你快速上手。核心内容:LangChain六大模块详解:模型(Models)、提示词(Prompts)、链(Chains)、索引(Indexes)、智能体(Agents)、内存(Memo
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- LLM 参数解析:使用 OpenAI API 在 Python 中的实用指南(含示例)
真智AI
python人工智能chatgpt
当你使用大语言模型(LLM)时,可能会注意到,即使提交相同的请求,多次运行后仍然会得到不同的回应。这是因为LLM具有概率性,它们的输出基于所学到的模式和概率,而不是固定规则。幸运的是,你可以通过调整特定的参数来控制LLM的行为,就像微调收音机的旋钮来调整到想要的电台一样。理解这些参数可以帮助你更好地定制LLM的输出,使其更具可预测性或创造性,具体取决于你的需求。在本文中,我们将探讨多个关键参数,这
- Windows Docker Desktop部署MaxKB详细教程
Roc-xb
docker容器运维MaxKB
MaxKB(MaxKnowledgeBase)是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库问答系统,旨在帮助企业、教育机构及研究组织高效管理知识并提供智能问答服务。一、前期准备工作首先,你需要再你的Windows电脑上安装DockerDesktop。本章教程,不介绍如何安装Docker。二、搜索镜像dockersearchmaxkb
- Docker安装分布式vLLM
MasonYyp
docker分布式容器
Docker安装分布式vLLM1介绍vLLM是一个快速且易于使用的LLM推理和服务库,适合用于生产环境。单主机部署会遇到显存不足的问题,因此需要分布式部署。分布式安装方法https://docs.vllm.ai/en/latest/serving/distributed_serving.html2安装方法⚠️注意:前期一定要把docker环境、运行时和GPU安装好。CUDAVersion:12.4
- 使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南
m0_57781768
pythonlangchaineasyui
使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南在现代人工智能应用中,大语言模型(LLM)扮演着越来越重要的角色,尤其是在对话系统、智能助理和其他自然语言处理任务中。然而,所有的模型都有一个有限的上下文窗口,意味着它们可以处理的输入令牌(tokens)数量是有限的。当我们需要处理较长的对话历史或复杂的任务链时,如何管理传递给模型的消息长度变得至关重要。在这篇文章
- 基于AWS云平台的法律AI应用系统开发方案
weixin_30777913
aws云计算人工智能python
该方案可实现法律文档处理速度提升300%+,关键信息提取准确率可达92%以上(基于实际测试数据),适合构建企业级法律智能中台。建议采用分阶段实施策略,优先实现文档解析和智能问答模块。一、技术栈规划层级技术组件说明存储层AWSS3AmazonOpenSearch(向量数据库)存储原始PDF文件支持向量检索的法律知识库AI服务层OpenAIGPT-4APIAmazonSageMaker(LLM微调)A
- 【LLM】大模型基础--大规模预训练语言模型的开源教程笔记
Langchain
笔记人工智能langchainllama大模型产品经理大模型基础
1.引言本文以DataWhale大模型开源教程为学习路线,进行一整个大模型的入门操作什么是语言模型语言模型是一种对词元序列(token)的概率分布,可以用于评估文本序列的合理性并生成新的文本。从生成文本的方式来看,LM(languagemodle)可以简单的分为:自回归模型非自回归模型特点逐字生成文本,每个词的生成都依赖于上文,关联性好一次性生成整个文本序列,不捕捉上文信息优点内容质量高生成速度快
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin