Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。
现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟、Exactly-once保证,而批处理需要支持高吞吐、高效处理。
Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。
Flink流处理特性:
Flink以层级式系统形式组件其软件栈,不同层的栈建立在其下层基础上,并且各层接受程序不同层的抽象形式。
Flink程序是由Stream和Transformation这两个基本构建块组成,其中Stream是一个中间结果数据,而Transformation是一个操作,它对一个或多个输入Stream进行计算处理,输出一个或多个结果Stream。
Flink程序被执行的时候,它会被映射为Streaming Dataflow。一个Streaming Dataflow是由一组Stream和Transformation Operator组成,它类似于一个DAG图,在启动的时候从一个或多个Source Operator开始,结束于一个或多个Sink Operator。
一个Stream可以被分成多个Stream分区(Stream Partitions),一个Operator可以被分成多个Operator Subtask,每一个Operator Subtask是在不同的线程中独立执行的。一个Operator的并行度,等于Operator Subtask的个数,一个Stream的并行度总是等于生成它的Operator的并行度。
One-to-one模式
比如从Source[1]到map()[1],它保持了Source的分区特性(Partitioning)和分区内元素处理的有序性,也就是说map()[1]的Subtask看到数据流中记录的顺序,与Source[1]中看到的记录顺序是一致的。
Redistribution模式
这种模式改变了输入数据流的分区,比如从map()[1]、map()[2]到keyBy()/window()/apply()[1]、keyBy()/window()/apply()[2],上游的Subtask向下游的多个不同的Subtask发送数据,改变了数据流的分区,这与实际应用所选择的Operator有关系。
Flink分布式执行环境中,会将多个Operator Subtask串起来组成一个Operator Chain,实际上就是一个执行链,每个执行链会在TaskManager上一个独立的线程中执行。
处理Stream中的记录时,记录中通常会包含各种典型的时间字段:
Flink使用WaterMark衡量时间的时间,WaterMark携带时间戳t,并被插入到stream中。
Flink支持基于时间窗口操作,也支持基于数据的窗口操作:
窗口分类:
Tumbling/Sliding Time Window
// Stream of (sensorId, carCnt)
val vehicleCnts: DataStream[(Int, Int)] = ...
val tumblingCnts: DataStream[(Int, Int)] = vehicleCnts
// key stream by sensorId
.keyBy(0)
// tumbling time window of 1 minute length
.timeWindow(Time.minutes(1))
// compute sum over carCnt
.sum(1)
val slidingCnts: DataStream[(Int, Int)] = vehicleCnts
.keyBy(0)
// sliding time window of 1 minute length and 30 secs trigger interval
.timeWindow(Time.minutes(1), Time.seconds(30))
.sum(1)
Tumbling/Sliding Count Window
// Stream of (sensorId, carCnt)
val vehicleCnts: DataStream[(Int, Int)] = ...
val tumblingCnts: DataStream[(Int, Int)] = vehicleCnts
// key stream by sensorId
.keyBy(0)
// tumbling count window of 100 elements size
.countWindow(100)
// compute the carCnt sum
.sum(1)
val slidingCnts: DataStream[(Int, Int)] = vehicleCnts
.keyBy(0)
// sliding count window of 100 elements size and 10 elements trigger interval
.countWindow(100, 10)
.sum(1)
自定义窗口
基本操作:
Barrier机制:
对齐:
当Operator接收到多个输入的数据流时,需要在Snapshot Barrier中对数据流进行排列对齐:
基于Stream Aligning操作能够实现Exactly Once语义,但是也会给流处理应用带来延迟,因为为了排列对齐Barrier,会暂时缓存一部分Stream的记录到Buffer中,尤其是在数据流并行度很高的场景下可能更加明显,通常以最迟对齐Barrier的一个Stream为处理Buffer中缓存记录的时刻点。在Flink中,提供了一个开关,选择是否使用Stream Aligning,如果关掉则Exactly Once会变成At least once。
CheckPoint:
Snapshot并不仅仅是对数据流做了一个状态的Checkpoint,它也包含了一个Operator内部所持有的状态,这样才能够在保证在流处理系统失败时能够正确地恢复数据流处理。状态包含两种:
在JobManager端,会接收到Client提交的JobGraph形式的Flink Job,JobManager会将一个JobGraph转换映射为一个ExecutionGraph,ExecutionGraph是JobGraph的并行表示,也就是实际JobManager调度一个Job在TaskManager上运行的逻辑视图。
物理上进行调度,基于资源的分配与使用的一个例子:
机器学习和图计算应用,都会使用到迭代计算,Flink通过在迭代Operator中定义Step函数来实现迭代算法,这种迭代算法包括Iterate和Delta Iterate两种类型。
Iterate
Iterate Operator是一种简单的迭代形式:每一轮迭代,Step函数的输入或者是输入的整个数据集,或者是上一轮迭代的结果,通过该轮迭代计算出下一轮计算所需要的输入(也称为Next Partial Solution),满足迭代的终止条件后,会输出最终迭代结果。
流程伪代码:
IterationState state = getInitialState();
while (!terminationCriterion()) {
state = step(state);
}
setFinalState(state);
Delta Iterate
Delta Iterate Operator实现了增量迭代。
流程伪代码:
IterationState workset = getInitialState();
IterationState solution = getInitialSolution();
while (!terminationCriterion()) {
(delta, workset) = step(workset, solution);
solution.update(delta)
}
setFinalState(solution);
最小值传播:
流处理系统中,当下游Operator处理速度跟不上的情况,如果下游Operator能够将自己处理状态传播给上游Operator,使得上游Operator处理速度慢下来就会缓解上述问题,比如通过告警的方式通知现有流处理系统存在的问题。
Flink Web界面上提供了对运行Job的Backpressure行为的监控,它通过使用Sampling线程对正在运行的Task进行堆栈跟踪采样来实现。
默认情况下,JobManager会每间隔50ms触发对一个Job的每个Task依次进行100次堆栈跟踪调用,过计算得到一个比值,例如,radio=0.01,表示100次中仅有1次方法调用阻塞。Flink目前定义了如下Backpressure状态:
OK: 0 <= Ratio <= 0.10
LOW: 0.10 < Ratio <= 0.5
HIGH: 0.5 < Ratio <= 1
Flink的Table API实现了使用类SQL进行流和批处理。
详情参考:https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/table_api.html
Flink的CEP(Complex Event Processing)支持在流中发现复杂的事件模式,快速筛选用户感兴趣的数据。
详情参考:https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/programming-model.html#next-steps
Gelly是Flink提供的图计算API,提供了简化开发和构建图计算分析应用的接口。
详情参考:https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/gelly/index.html
FlinkML是Flink提供的机器学习库,提供了可扩展的机器学习算法、简洁的API和工具简化机器学习系统的开发。
详情参考:https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/index.html
当Flink系统启动时,首先启动JobManager和一至多个TaskManager。JobManager负责协调Flink系统,TaskManager则是执行并行程序的worker。当系统以本地形式启动时,一个JobManager和一个TaskManager会启动在同一个JVM中。
当一个程序被提交后,系统会创建一个Client来进行预处理,将程序转变成一个并行数据流的形式,交给JobManager和TaskManager执行。
编译flink,本地启动。
$ java -version
java version "1.8.0_111"
$ git clone https://github.com/apache/flink.git
$ git checkout release-1.1.4 -b release-1.1.4
$ cd flink
$ mvn clean package -DskipTests
$ cd flink-dist/target/flink-1.1.4-bin/flink-1.1.4
$ ./bin/start-local.sh
编写本地流处理demo。
SocketWindowWordCount.java
public class SocketWindowWordCount {
public static void main(String[] args) throws Exception {
// the port to connect to
final int port;
try {
final ParameterTool params = ParameterTool.fromArgs(args);
port = params.getInt("port");
} catch (Exception e) {
System.err.println("No port specified. Please run 'SocketWindowWordCount --port '");
return;
}
// get the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data by connecting to the socket
DataStream text = env.socketTextStream("localhost", port, "\n");
// parse the data, group it, window it, and aggregate the counts
DataStream windowCounts = text
.flatMap(new FlatMapFunction() {
public void flatMap(String value, Collector out) {
for (String word : value.split("\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(1))
.reduce(new ReduceFunction() {
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");
}
// Data type for words with count
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
pom.xml
org.apache.flink
flink-streaming-java_2.10
1.1.4
org.apache.flink
flink-java
1.1.4
org.apache.flink
flink-clients_2.10
1.1.4
执行mvn构建。
$ mvn clean install
$ ls target/flink-demo-1.0-SNAPSHOT.jar
开启9000端口,用于输入数据:
$ nc -l 9000
提交flink任务:
$ ./bin/flink run -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0-SNAPSHOT.jar --port 9000
在nc里输入数据后,查看执行结果:
$ tail -f log/flink-*-jobmanager-*.out
查看flink web页面:localhost:8081
Flink系统核心可分为多个子项目。分割项目旨在减少开发Flink程序需要的依赖数量,并对测试和开发小组件提供便捷。
Flink当前还包括以下子项目:
Flink在YARN集群上运行时:Flink YARN Client负责与YARN RM通信协商资源请求,Flink JobManager和Flink TaskManager分别申请到Container去运行各自的进程。
YARN AM与Flink JobManager在同一个Container中,这样AM可以知道Flink JobManager的地址,从而AM可以申请Container去启动Flink TaskManager。待Flink成功运行在YARN集群上,Flink YARN Client就可以提交Flink Job到Flink JobManager,并进行后续的映射、调度和计算处理。
$ export HADOOP_CONF_DIR=/etc/hadoop/conf
$ ./bin/flink run -m yarn-cluster -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0-SNAPSHOT.jar
$ ./bin/yarn-session.sh -n 4 -jm 1024 -tm 4096 -d
$ ./bin/flink run -c com.demo.florian.WordCount $DEMO_DIR/target/flink-demo-1.0.SNAPSHOT.jar
http://shiyanjun.cn/archives/1508.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/index.html