相关链接传送:
【YOLO-v3 源码详细解读】https://blog.csdn.net/Kefenggewu_/article/details/122317868/
【基于YOLO-v3训练自己的数据与检测任务】
https://blog.csdn.net/Kefenggewu_/article/details/122336631
# flask_server.py
import flask
import io
import threading
import json
import base64
import numpy as np
import cv2
from models import *
from utils.utils import *
from utils.datasets import *
import os
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
# 初始化Flask app
app = flask.Flask(__name__)
use_cuda = torch.cuda.is_available()
def load_model():
"""Load the pre-trained model, you can use your model just as easily.
"""
####### 重点配置点
###### 配置文件和权重文件路径(同一次训练得到的产物)############
# yolov3.cfg 网络结构配置文件
config_path = 'H:\\PyTorch-YOLOv3\\config\\yolov3.cfg'
# yolov3.weights 网络的训练权重
weights_path = 'H:\\PyTorch-YOLOv3\\weights\\yolov3.weights'
# coco.names 网络训练时候的类别名称
class_path = 'H:\\PyTorch-YOLOv3\\data\\coco.names'
global classes
classes = load_classes(class_path)
global model
#默认网络输入大小为416
model = Darknet(config_path)
#载入模型
model.load_darknet_weights(weights_path)
if use_cuda:
model.cuda()
model.eval()
# class_path = 'H:\\唐宇迪\最新唐宇迪\\47-深度学习模型部署与剪枝优化实例-加密\\000资料\\深度学习模型部署与剪枝优化实例\\YOLO部署实例\\PyTorch-YOLOv3\\data\\coco.names'
# classes = load_classes(class_path)
Tensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
# 数据预处理
def np2tensor(np_array, img_size):
# 对图像进行padding
h, w, _ = np.array(np_array).shape
dim_diff = np.abs(h - w)
pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
pad = ((pad1, pad2), (0, 0), (0, 0)) if h <= w else ((0, 0), (pad1, pad2), (0, 0))
# 进行resize 操作
img_shape = (img_size, img_size)
input_img = np.pad(np_array, pad, 'constant', constant_values=127.5) / 255.
input_img = cv2.resize(input_img, (img_size,img_size))
input_img = np.transpose(input_img, (2, 0, 1))
input_img = torch.from_numpy(input_img).float()
return input_img
def yolo_detection(img_array, img_size = 416):
img_array = np.array(img_array)
img_tensor = np2tensor(img_array,img_size)
img_tensor = Variable(img_tensor.type(Tensor))
img_tensor = img_tensor.unsqueeze(0)
# 线上不需要进行权重参数的更新
with torch.no_grad():
detections = model(img_tensor) # 输入图
detections = non_max_suppression(detections) # 经过NMS,得到结果框
########### 以下是对检测结果进行坐标还原到在原图对应的绝对位置
pad_x = max(img_array.shape[0] - img_array.shape[1], 0) * (img_size / max(img_array.shape))
pad_y = max(img_array.shape[1] - img_array.shape[0], 0) * (img_size / max(img_array.shape))
unpad_h = img_size - pad_y
unpad_w = img_size - pad_x
results=[]
if detections is not None:
detection = detections[0]
unique_labels = detection[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detection:
box_h = ((y2 - y1) / unpad_h) * img_array.shape[0]
box_w = ((x2 - x1) / unpad_w) * img_array.shape[1]
y1 = ((y1 - pad_y // 2) / unpad_h) * img_array.shape[0]
x1 = ((x1 - pad_x // 2) / unpad_w) * img_array.shape[1]
class_name = classes[int(cls_pred)]
detect_result ={'class':class_name, 'x':x1.item(), 'y':y1.item(), 'h':box_h.item(), 'w':box_w.item()}
results.append(detect_result)
data_json = json.dumps(results,sort_keys=True, indent=4, separators=(',', ': '))
return data_json
@app.route("/predict", methods=["POST"])
def predict():
data = {"success": False}
if flask.request.method == 'POST':
if flask.request.files.get("image"):
image = flask.request.files["image"].read()
image = Image.open(io.BytesIO(image)).convert('RGB')
res = yolo_detection(image)
data['predictions'] = res
data["success"] = True
return flask.jsonify(data)
if __name__ == "__main__":
print("Loading PyTorch model and Flask starting server ...")
print("Please wait until server has fully started")
load_model() # 加载模型
app.run()
# flask_detect.py
import requests
import argparse
# Initialize the PyTorch REST API endpoint URL.
PyTorch_REST_API_URL = 'http://127.0.0.1:5000/predict'
def predict_result(image_path):
# Initialize image path
image = open(image_path, 'rb').read()
payload = {'image': image}
# Submit the request.
r = requests.post(PyTorch_REST_API_URL, files=payload).json()
# Ensure the request was successful.
if r['success']:
print(r['predictions'])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Classification demo')
parser.add_argument('--file', type=str, help='test image file')
args = parser.parse_args()
predict_result(args.file)
Python flask_server.py
补充:一般的Pytorch模型部署,同样是两个步骤
# run_pytorch_server.py
import io
import json
import flask
import torch
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from torchvision import transforms as T
from torchvision.models import resnet50 # 导入训练好的模型
from torch.autograd import Variable
# 初始化Flask app
app = flask.Flask(__name__)
model = None
use_gpu = False
# 返回结果用的
with open('imagenet_class.txt', 'r') as f:
idx2label = eval(f.read())
# 加载模型进来
def load_model():
"""Load the pre-trained model, you can use your model just as easily.
"""
global model
#这里直接加载官方工具包里提供的训练好的模型(代码会自动下载)括号内参数为是否下载模型对应的配置信息
model = resnet50(pretrained=True)
#将模型指定为测试格式
model.eval()
#是否使用gpu
if use_gpu:
model.cuda()
# 数据预处理(这里是对图像进行检测)
def prepare_image(image, target_size):
"""Do image preprocessing before prediction on any data.
:param image: original image
:param target_size: target image size
:return:
preprocessed image
"""
#针对不同模型,image的格式不同,但需要统一至RGB格式
if image.mode != 'RGB':
image = image.convert("RGB")
# Resize the input image and preprocess it.(按照所使用的模型将输入图片的尺寸修改,并转为tensor)
image = T.Resize(target_size)(image)
image = T.ToTensor()(image)
# Convert to Torch.Tensor and normalize. mean与std (RGB三通道)这里的参数和数据集中是对应的,训练过程中一致
image = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(image) # 数据标准化
# Add batch_size axis.增加一个维度,用于按batch测试 本次这里一次测试一张
image = image[None]
if use_gpu:
image = image.cuda()
return Variable(image, volatile=True) #不需要求导
# 开启服务 这里的predict只是一个名字,可自定义
@app.route("/predict", methods=["POST"])
def predict():
# Initialize the data dictionary that will be returned from the view.
#做一个标志,刚开始无图像传入时为false,传入图像时为true
data = {"success": False}
# Ensure an image was properly uploaded to our endpoint.
# 如果收到请求
if flask.request.method == 'POST':
#判断是否为图像
if flask.request.files.get("image"):
# Read the image in PIL format
# 将收到的图像进行读取
image = flask.request.files["image"].read()
image = Image.open(io.BytesIO(image)) #二进制数据
# Preprocess the image and prepare it for classification.
# 利用上面的预处理函数将读入的图像进行预处理
image = prepare_image(image, target_size=(224, 224))
# Classify the input image and then initialize the list of predictions to return to the client.
preds = F.softmax(model(image), dim=1)
results = torch.topk(preds.cpu().data, k=3, dim=1)
results = (results[0].cpu().numpy(), results[1].cpu().numpy())
#将data字典增加一个key,value,其中value为list格式
data['predictions'] = list()
# Loop over the results and add them to the list of returned predictions
for prob, label in zip(results[0][0], results[1][0]):
label_name = idx2label[label]
r = {"label": label_name, "probability": float(prob)}
#将预测结果添加至data字典
data['predictions'].append(r)
# Indicate that the request was a success.
data["success"] = True
# Return the data dictionary as a JSON response.
# 将最终结果以json格式文件传出
return flask.jsonify(data)
if __name__ == '__main__':
print("Loading PyTorch model and Flask starting server ...")
print("Please wait until server has fully started")
#先加载模型
load_model()
#再开启服务
app.run()
# simple_request.py
import requests
import argparse
# Initialize the PyTorch REST API endpoint URL.
PyTorch_REST_API_URL = 'http://127.0.0.1:5000/predict'
def predict_result(image_path):
# Initialize image path
image = open(image_path, 'rb').read()
payload = {'image': image}
# Submit the request.
r = requests.post(PyTorch_REST_API_URL, files=payload).json()
# Ensure the request was successful.
if r['success']:
# Loop over the predictions and display them.
for (i, result) in enumerate(r['predictions']):
print('{}. {}: {:.4f}'.format(i + 1, result['label'],
result['probability']))
# Otherwise, the request failed.
else:
print('Request failed')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Classification demo')
parser.add_argument('--file',default= './dog.jpg', type=str, help='test image file')
args = parser.parse_args()
predict_result(args.file)