leetcode链接:力扣题目链接
视频链接:动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期
给定一个整数数组 prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
这题相比买卖股票II 添加了冷冻的限制,但其实k还是无穷的,把II的代码修改一下即可:
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp (prices.size(),vector<int>(2));
int cooldown = 1;//本题的冷却期为1天
dp[0][0] = 0;
dp[0][1] = -prices[0];
for(int i = 1; i < prices.size(); i++){
if(i - cooldown - 1 < 0){//防止数组越界,或者说在这段时间内i很短,不需要冷静期
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = max(dp[i-1][1], -prices[i]);
continue;
}
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i- cooldown - 1][0] -prices[i]);
}
return dp[prices.size() - 1][0];
}
};
注意这里的dp[i][1]有变化,分析一下:dp[i][1]表示到状态1的两种情况,第一个是rest,从前一天开始就持有股票且不仍然不卖出,此时就是dp[i - 1][1],第二种情况是从前i - cooldown-1天买入,因为有冷冻期,故经过cooldown天才能在第二天买入。
leetcode链接:力扣题目链接
视频链接:动态规划来决定最佳时机,这次含手续费!| LeetCode:714.买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
这题加入了手续费的限制,k还是无限大,还是买卖股票II的变体。最终代码:
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
vector<vector<int>> dp (prices.size(),vector<int>(2));
dp[0][0] = 0;
dp[0][1] = -( prices[0]);
for(int i = 1; i < prices.size(); i++){
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i] - fee);
dp[i][1] = max(dp[i-1][1], dp[i-1][0] -prices[i]);
}
return dp[prices.size() - 1][0];
}
};
注意这里手续费在一次交易(一次买入,一次卖出)中只需要交一次,故在卖出的时候交手续费就可以了,比较方便。
[外链图片转存中…(img-ZbHyYewC-1693441148143)]
vector<vector<vector<int>>> dp(prices.size(), vector<vector<int>>
(max_k + 1, vector<int>(2,0)));
请你实现如下函数:
int maxProfit_all_in_one(int max_k, int[] prices, int cooldown, int fee);
输入股票价格数组 prices
,你最多进行 max_k
次交易,每次交易需要额外消耗 fee
的手续费,而且每次交易之后需要经过 cooldown
天的冷冻期才能进行下一次交易,请你计算并返回可以获得的最大利润。
最终代码:
// 同时考虑交易次数的限制、冷冻期和手续费
int maxProfit_all_in_one(int max_k, vector<int>& prices, int cooldown, int fee) {
int n = prices.size();
if (n <= 0) {
return 0;
}
if (max_k > n / 2) {
// 交易次数 k 没有限制的情况
return maxProfit_k_inf(prices, cooldown, fee);
}
vector<vector<vector<int>>> dp(n, vector<vector<int>>(max_k + 1, vector<int>(2)));
// k = 0 时的 base case
for (int i = 0; i < n; i++) {
dp[i][0][1] = INT_MIN;
dp[i][0][0] = 0;
}
for (int i = 0; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) {
// base case 1
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i] - fee;
continue;
}
// 包含 cooldown 的 base case
if (i - cooldown - 1 < 0) {
// base case 2
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
// 别忘了减 fee
dp[i][k][1] = max(dp[i-1][k][1], -prices[i] - fee);
continue;
}
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
// 同时考虑 cooldown 和 fee
dp[i][k][1] = max(dp[i-1][k][1], dp[i-cooldown-1][k-1][0] - prices[i] - fee);
}
}
return dp[n - 1][max_k][0];
}
// k 无限制,包含手续费和冷冻期
int maxProfit_k_inf(vector<int>& prices, int cooldown, int fee) {
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(2));
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
// base case 1
dp[i][0] = 0;
dp[i][1] = -prices[i] - fee;
continue;
}
// 包含 cooldown 的 base case
if (i - cooldown - 1 < 0) {
// base case 2
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
// 别忘了减 fee
dp[i][1] = max(dp[i-1][1], -prices[i] - fee);
continue;
}
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
// 同时考虑 cooldown 和 fee
dp[i][1] = max(dp[i-1][1], dp[i-cooldown-1][0] - prices[i] - fee);
}
return dp[n - 1][0];
}