数组与链表算法-数组与多项式

目录

数组与链表算法-数组与多项式

多项式数组表达式

C++代码


数组与链表算法-数组与多项式

多项式是数学中相当重要的表达方式,如果使用计算机来处理多项式的各种相关运算,那么通常使用数组或链表来存储多项式。

多项式数组表达式

假如一个多项P(X) = a_{n}X^{n} + a_{n-1}X^{n-1} + ... + a_{1}X + a_{0},这个多项式P(X)就被称为n次多项式。一个多项式如果使用数组结构存储在计算机中的话,表示法有以下两种:

(1)使用一个n+2长度的一维数组来存放,数组的第一个位置存储多项式的最大指数n,数组之后的各个位置从指数n开始,依次递减按序存储对应项的系数:

        P = (n, a_{n}, a_{n-1}, ... , a_{1}, a_{0})

存储在A(1:n+2)中,例如P(X) = 2X^{5} + 3X^{4} + 5X^{2} + 4X + 1,可转换为A数组来表示,例如:

        A = [5, 2, 3, 0, 5, 4, 1]

使用这种表达法的优点是在计算机中运用时,对于多项式各种运算(如加法与乘法)的设计比较方便。不过,如果多项式的系数为多半为零,例如X^{100}+1,就太浪费内存空间了。

C++代码

#include
using namespace std;

void PolySum(int* arrA, int* arrB, int* arrResoult) {
	arrResoult[0] = arrA[0];
	for (int i = 1; i < arrA[0] + 2; i++) {
		arrResoult[i] = arrA[i] + arrB[i];		
	}
}

void PrintPoly(int* arr) {
	int MaxExp = arr[0];
	for (int i = 1; i < arr[0] +2; i++) {
		if (arr[i] != 0) {
			if (MaxExp != 0)
				cout << arr[i] << "X^" << MaxExp << " ";
			else
				cout << arr[i];
			if (MaxExp - 1 >= 0)
				cout << " + ";
		}
		MaxExp--;
	}
	cout << endl;
}

int main() {
	int* PolyA = new int[]{ 4,3,7,0,6,2 };
	int* PolyB = new int[]{ 4,1,5,2,0,9 };
	int* PolyResoult = new int[PolyA[0]+2] {0};
	cout << "多项式A:";
	PrintPoly(PolyA);
	cout << "多项式B:";
	PrintPoly(PolyB);
	PolySum(PolyA, PolyB, PolyResoult);
	cout << "A + B =  ";
	PrintPoly(PolyResoult);
	return 0;
}

输出结果

数组与链表算法-数组与多项式_第1张图片

(2)只存储多项式中的非零项。如果有m个非零项,就使用2m+1长的数组来存储每一个非零项的指数及系数,但数组的第一个元素存储的是这个多项式非零项的个数。

例如P(X) = 2X^{5} + 3X^{4} + 5X^{2} + 4X + 1,可表示成A(1:2m+1)数组,如下所示:

        A = \left \{ 5, 2, 5, 3, 4, 5, 2, 4, 1, 1, 0 \right \}

这种方法的优点是在多项式零项较多时可以减少对内存空间的浪费,但缺点是在为多项式设计各种运算时会复杂许多。

使用多项式的两种数组表示法来存储多项式P(X) = 8X^{5} + 7X^{4} + 5X^{2} + 12,结果如下:

  • P = (5, 8, 7, 0, 5, 0, 12) 
  • P = (5, 8, 5, 7, 4, 5, 2, 12, 0)

注意,在上面这个例子中,第二种数组表示法并没有体现出减少对内存空间的浪费的优点,这是因为多项式P(X)的零项并不多,只是缺了X^{3}X这两项。

你可能感兴趣的:(算法(Algorithm),c++,开发语言,算法,数组,多项式)