- 【智能优化算法】多目标于分解的多目标进化算法MOEA/D算法(Matlab代码实现)
荔枝科研社
单多目标智能算法算法matlab开发语言多目标进化算法MOEA/D算法
目录1概述2数学模型3运行结果4参考文献5Matlab代码及详细文章1概述基于分解的多目标进化算法(multiobjectiveevolu-tionaryalgorithmbasedondecomposition,MOEA/D)是一种利用分解策略解决多目标问题的算法2'。该算法通过聚合函数将多目标问题分解为N个子问题,每个子问题分配一个对应的权重和相关种群点的邻域"3'。种群迭代通过邻域内随机选择
- 量子计算时代的突破:微算法科技多目标进化算法重塑量子电路设计范式
知识产权13937636601
计算机量子计算
在量子硬件纠错能力尚未突破的NISQ(含噪声中等规模量子)时代,量子电路设计效率成为实用化关键瓶颈。微算法科技(MicroAlgo)创新性提出多目标进化算法驱动的量子电路优化框架,成功将量子门数量压缩38%、保真度提升7.3%、并行度提高5.1倍,为量子计算实用化扫除核心障碍。本文深入解析该技术如何通过Pareto前沿搜索、门分解约束建模、噪声自适应进化三大突破,在超导/离子阱/光量子三大硬件平台
- 动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
IT猿手
动态多目标优化MATLAB动态多目标算法迁移学习matlab动态多目标进化算法动态多目标优化算法人工智能机器学习
一、Tr-NSGA-II介绍基于迁移学习的动态多目标遗传算法(TransferLearningbasedDynamicMultiobjectivenon-dominatedsortinggeneticalgorithmII,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。工作原理迁移学习的应用:Tr-NSGA-II利用迁移学
- HV指标——多目标进化算法性能评价指标
小可的科研日常
算法
超体积指标(HV,Hypervolume):算法获得的非支配解集与参照点围成的目标空间中区域的体积。HV值越大,说明算法的综合性能越好。优点:1.同时评价收敛性和多样性;2.能够以单个数字得到解与最优集合的接近程度,并在某种程度上得到目标空间上解的分布。缺点:1.计算复杂度高,尤其是高维多目标优化问题;2.参考点的选择在一定程度上决定超体积指标值的准确性。
- 自动化学习与边缘计算融合驱动语音识别模型优化新路径
智能计算研究中心
其他
内容概要当前,自动化机器学习与边缘计算技术的交叉融合正在重塑语音识别模型的研发范式。这一趋势的核心在于通过算法优化与算力下沉的双重路径,解决传统云端集中式训练面临的效率瓶颈与隐私风险。以联邦学习框架为基础的数据协同机制,使得分散在边缘设备中的语音样本能够在不共享原始数据的前提下参与模型迭代,有效平衡了数据利用与隐私保护之间的矛盾。与此同时,超参数自动化搜索技术通过贝叶斯优化、进化算法等策略,显著降
- Geatpy2:高性能的Python遗传和进化算法工具箱
Lins号丹
启发式算法pythongeatpy2遗传算法
文章目录1.关于Geatpy1.1安装方式1.2Geatpy架构简介Problem问题类Population种群类PsyPopulation多染色体种群类Algorithm算法模板类1.3Geatpy基本数据结构2.入门案例2.1带装饰器的“求解器模式”写法2.2传入二维数组的“求解器模式”写法2.3“面向对象”的写法1.关于GeatpyGeatpy是一个高性能实用型进化算法工具箱,提供许多已实现
- 遗传算法在Wigan上的代码实现 人工智能 python
zhangfeng1133
算法
好的,我们可以使用遗传算法来优化WGAN的超参数,包括学习率、数据维度和\lambda(通常用于梯度惩罚项)。以下是一个基于Python的示例代码,使用了deap库来实现遗传算法。deap是一个用于进化算法的库,非常适合用于这种优化任务。安装依赖在运行代码之前,确保安装了以下依赖:pipinstalldeaptorchtorchvision示例代码以下代码展示了如何使用遗传算法优化WGAN的超参数
- 像素画板:从离散数学到交互系统的艺术工程
闲人编程
python交互抗锯齿洪水填充调色板进化游戏像素画板
目录像素画板:从离散数学到交互系统的艺术工程引言第一章画布数学模型1.1离散画布存储1.2笔触运动方程第二章核心绘图算法2.1洪水填充算法2.2抗锯齿处理第三章事件处理引擎3.1输入事件流水线3.2手势识别系统第四章高级功能设计4.1历史记录系统4.2对称绘图模式第五章性能优化体系5.1脏矩形更新算法5.2内存分级策略第六章用户行为分析6.1笔触模式识别6.2调色板进化算法结语附录:部分代码像素画
- 利用遗传算法优化深度学习模型
盼小辉丶
遗传算法与深度学习实战深度学习遗传算法超参数优化
利用遗传算法优化深度学习模型0.前言1.神经进化2.使用遗传算法作为深度学习优化器小结系列链接0.前言神经进化涵盖了所有用于改进深度学习的进化算法。更具体地说,神经进化用来定义应用于深度学习的特定优化模式。我们已经学习了如何将进化算法应用于超参数优化,并使用Numpy实现多层感知器(multi-layerperceptron,MLP)模型,接下来,我们使用遗传算法进行模型优化。1.神经进化神经进化
- 群体智能优化算法-爱情进化算法 (Love Evolution Algorithm, LEA,含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要爱情进化算法(LEA)是一种基于心理学刺激-价值-角色理论(Stimulus-Value-RoleTheory)所提出的新型元启发式算法。该算法将“恋爱中的人”抽象为种群个体,通过对个体“幸福度(Happiness)”的定义和动态更新,模拟了从“相遇->价值交流->角色平衡”三个阶段不断逼近全局最优解的过程。LEA在高维连续优化与工程应用等场景下可实现对搜索空间的充分探索与精细开发。本文结合算
- python学智能算法(七)|KNN邻近算法
西猫雷婶
人工智能python学习笔记算法
【1】引言前述学习进程中,已经了解了一些非常经典的智能算法,相关文章包括且不限于:python学智能算法(三)|模拟退火算法:深层分析_模拟退火动画演示-CSDN博客python学智能算法(四)|遗传算法:原理认识和极大值分析_遗传算法和模拟退火时间复杂度-CSDN博客python学智能算法(五)|差分进化算法:原理认识和极小值分析-CSDN博客python学智能算法(六)|神经网络算法:BP神经
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- 非支配性排序遗传算法 III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)
ww18000
r语言开发语言数据挖掘机器学习
非支配性排序遗传算法III(NSGA-III)是用于求解多目标优化问题的一种进化算法1。以下是对它的具体介绍1:具体完整算法请跳转:非支配性排序遗传算法III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)发展背景NSGA-III由KalyanmoyDeb和HarshitJain提出,是在NSGA-II的基础上进行改进和扩展,以更好地处理多目标优化问题,尤其是在
- 【智能算法】协同进化算法
大雨淅淅
智能算法人工智能机器学习网络算法
1、进化算法自从达尔文的生物进化论被接受,基于自然界中生物优胜劣汰的生存规则发展起来的生物进化的理论研究得到了空前的发展。将生物遗传变异、优胜劣汰的生存机制应用到优化领域,就得到了进化计算(EvolutionaryComputation,EC)。以种群形式存在的物种,想要生存下去,就必须通过遗传变异来适应环境,通过自身的不断完善来适应生存环境。遗传的目的在于将父代的优良性能传递给子代,让子代能更好
- 差分进化算法 (Differential Evolution) 算法详解及案例分析
闲人编程
python算法python开发语言选择DE差分进化算法变异
差分进化算法(DifferentialEvolution)算法详解及案例分析目录差分进化算法(DifferentialEvolution)算法详解及案例分析1.引言2.差分进化算法(DE)算法原理2.1基本概念2.2算法步骤3.差分进化算法的优势与局限性3.1优势3.2局限性4.案例分析4.1案例1:单目标优化问题4.1.1问题描述4.1.2代码实现4.1.3流程图4.1.4优化曲线4.2案例2:
- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法DE
DroidMind
智能算法与机器学习差分进化算法
差分进化算法DE属于进化算法,这里算法还包括依次遗传算法、进化策略、进化规划。差分进化算法包括三个基本的操作:变异操作、交叉(重组)操作和选择操作。一、算法建模:1、假设我们希望得到函数f(x)的最优解,这个函数有D个解。2、为函数f(x)设置一个解的组数N,N至少为4。3、这样我们就得到了N组并且每组解的个数为D的集合,它可以使用N个D维参数向量来表示。因为它类似于遗传算法进化一样,是一代一代的
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- 【机器学习】---神经架构搜索(NAS)
Undoom
机器学习Python机器学习架构人工智能python
这里写目录标题引言1.什么是神经架构搜索(NAS)1.1为什么需要NAS?2.NAS的三大组件2.1搜索空间搜索空间设计的考虑因素:2.2搜索策略2.3性能估计3.NAS的主要方法3.1基于强化学习的NAS3.2基于进化算法的NAS3.3基于梯度的NAS4.NAS的应用5.实现一个简单的NAS框架6.总结引言随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- 利用多目标粒子群优化(MOPSO)算法对全加器中的晶体管大小进行重新调整以达到功率优化:详细步骤与Python实现
快撑死的鱼
python算法解析算法python开发语言
简介:随着技术的不断进步,微电子行业始终追求在保持性能的同时降低功率消耗。全加器作为数字电路中的基本元素,其功率优化显得尤为关键。本文将详细介绍如何使用一种称为多目标粒子群优化(MOPSO)的进化算法,重新调整晶体管的大小,以优化全加器中的功率。此外,我们还将提供Python代码实现,供读者参考和使用。具体的项目实现过程,我们已经准备了一个完整的项目文件,您可以下载以获取更多细节。1.多目标粒子群
- MATLAB:差分进化算法(Differential Evolution Algorithm,DE)求解基于移动边缘计算的任务卸载与资源调度(提供MATLAB代码)
优化算法MATLAB与Python
优化算法MATLABmatlab算法边缘计算人工智能开发语言
一、优化模型介绍移动边缘计算中的计算卸载是一种将计算任务从设备卸载到边缘服务器的技术。它可以将计算量大的任务分配给计算资源充足的代理服务器进行处理,从而减轻设备的计算负担,延长设备的电池寿命,并满足业务时延需求。计算卸载的过程一般包括以下几个步骤:任务划分:将计算任务划分为多个子任务,以便在边缘服务器上并行处理。任务调度:根据任务的特性和边缘服务器的资源情况,选择合适的边缘服务器来执行任务。数据传
- 多目标优化(Python):多目标粒子群优化算法(MOPSO)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6(提供Python代码)
优化算法MATLAB与Python
Python优化算法python算法开发语言人工智能强化学习
一、多目标粒子群优化算法多目标粒子群优化算法(MOPSO)是一种用于解决多目标优化问题的进化算法。它基于粒子群优化算法(PSO),通过引入多个目标函数和非支配排序来处理多目标问题。MOPSO的基本思想是将问题转化为在多维搜索空间中寻找一组最优解的问题。每个解被称为一个粒子,它在搜索空间中移动,并根据自身的经验和群体的经验进行调整。粒子的位置表示解的候选解,速度表示解的搜索方向和步长。MOPSO的算
- 遗传算法 (Genetic Algorithm, GA) 详解与实现
安替-AnTi
机器学习GA遗传算法
文章目录基本思想基本概念基本操作算法基本步骤代码实现参考文献基本思想遗传算法(GeneticAlgorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则,它最初由美国Michigan大学的J.Holland教授于1967年提出。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(
- 论文阅读:An interactive method for surrogate-assisted multi-objective evolutionary algorithms
还是要努力呀!
论文阅读论文阅读多目标优化交互式
Aninteractivemethodforsurrogate-assistedmulti-objectiveevolutionaryalgorithms辅助代理多目标进化算法的交互式方法作者:DinhNguyenDuc、LongNguyen、KienThaiTrung期刊:IEEEInternationalConferenceonKNOWLEDGEANDSYSTEMS、November2020D
- 粒子群优化算法简介
月下香
优化算法算法
粒子群优化算法简介01算法基本思想02算法步骤03重要参数与更新公式04编程实现05高级特性约束处理多目标优化混沌搜索群体拓扑结构自适应参数调整06总结重要参考文献粒子群优化(ParticleSwarmOptimization,简称PSO)是一种用于求解连续优化问题的进化算法,最早由Kennedy和Eberhart于1995年提出,灵感来源于鸟群觅食和鱼群觅食的行为。01算法基本思想PSO算法将待
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen