转自:https://blog.csdn.net/zhongkeli/article/details/8832946
这个算法主要要弄懂三个循环的顺序关系。
弗洛伊德(Floyd)算法过程:
1、用D[v][w]记录每一对顶点的最短距离。
2、依次扫描每一个点,并以其为基点再遍历所有每一对顶点D[][]的值,看看是否可用过该基点让这对顶点间的距离更小。
算法理解:
最短距离有三种情况:
1、两点的直达距离最短。(如下图
2、两点间只通过一个中间点而距离最短。(图
3、两点间用通过两各以上的顶点而距离最短。(图
对于第一种情况:在初始化的时候就已经找出来了且以后也不会更改到。
对于第二种情况:弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短,也就是遍历了图中所有的三角形(算法中对同一个三角形扫描了九次,原则上只用扫描三次即可,但要加入判断,效率更低)。
对于第三种情况:如下图的五边形,可先找一点(比如x,使
结合代码 并参照上图所示 我们来模拟执行下 这样才能加深理解:
第一关键步骤:当k执行到x,i=v,j=u时,计算出v到u的最短路径要通过x,此时v、u联通了。
第二关键步骤:当k执行到u,i=v,j=y,此时计算出v到y的最短路径的最短路径为v到u,再到y(此时v到u的最短路径上一步我们已经计算过来,直接利用上步结果)。
第三关键步骤:当k执行到y时,i=v,j=w,此时计算出最短路径为v到y(此时v到y的最短路径长在第二步我们已经计算出来了),再从y到w。
依次扫描每一点(k),并以该点作为中介点,计算出通过k点的其他任意两点(i,j)的最短距离,这就是floyd算法的精髓!同时也解释了为什么k点这个中介点要放在最外层循环的原因.
对于这个算法,网上有一个证明的版本:
floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在),floyd算法加入了这个概念 Ak(i,j):表示从i到j中途不经过索引比k大的点的最短路径。
这个限制的重要之处在于,它将最短路径的概念做了限制,使得该限制有机会满足迭代关系,这个迭代关系就在于研究:假设Ak(i,j)已知,是否可以借此推导出Ak-1(i,j)。
假设我现在要得到Ak(i,j),而此时Ak(i,j)已知,那么我可以分两种情况来看待问题:1. Ak(i,j)沿途经过点k;2. Ak(i,j)不经过点k。如果经过点k,那么很显然,Ak(i,j) = Ak-1(i,k) + Ak-1(k,j),为什么是Ak-1呢?因为对(i,k)和(k,j),由于k本身就是源点(或者说终点),加上我们求的是Ak(i,j),所以满足不经过比k大的点的条件限制,且已经不会经过点k,故得出了Ak-1这个值。那么遇到第二种情况,Ak(i,j)不经过点k时,由于没有经过点k,所以根据概念,可以得出Ak(i,j)=Ak-1(i,j)。现在,我们确信有且只有这两种情况---不是经过点k,就是不经过点k,没有第三种情况了,条件很完整,那么是选择哪一个呢?很简单,求的是最短路径,当然是哪个最短,求取哪个,故得出式子:
Ak(i,j) = min( Ak-1(i,j), Ak-1(i,k) + Ak-1(k,j) )
现在已经得出了Ak(i,j) = Ak-1(i,k) + Ak-1(k,j)这个递归式,但显然该递归还没有一个出口,也就是说,必须定义一个初始状态,事实上,这个初始状态取决于索引k是从0开始还是从1开始,上面的代码是C写的,是以0为开始索引,但一般描述算法似乎习惯用1做开始索引,如果是以1为开始索引,那么初始状态值应设置为A0了,A0(i,j)的含义不难理解,即从i到j的边的距离。也就是说,A0(i,j) = cost(i,j) 。由于存在i到j不存在边的情况,也就是说,在这种情况下,cost(i,j)无限大,故A0(i,j) = oo(当i到j无边时)
到这里,已经列出了求取Ak(i,j)的整个算法了,但是,最终的目标是求dist(i,j),即i到j的最短路径,如何把Ak(i,j)转换为dist(i,j)?这个其实很简单,当k=n(n表示索引的个数)的时候,即是说,An(i,j)=dist(i,j)。那是因为当k已经最大时,已经不存在索引比k大的点了,那这时候的An(i,j)其实就已经是i到j的最短路径了。
从floyd算法中不难看出,要设计一个好的动态规划算法,首先需要研究是否能把目标进行重新诠释(这一步是最关键最富创造力的一步),转化为一个可以被分解的子目标,如果可以转化,就要想办法寻找数学等式使目标收敛为子目标,如果这一步可以实现了,还需要研究该递归收敛式的出口,即初始状态是否明确(这一步往往已经简单了)。
其中我们用 path 数组记录 经过路径 其实 path 的定义如下 path[i][j] = k 表示 是最短路径 i-……j 和 j 的直接 前驱 为 k 即是: i-->...............-->k ->j
举例子:
如 1-> 5->4 4->3->6 此时 path[1][6] = 0 ; 0表示 1->6 不通 当我们 引入 节点 k = 4 此时有 1->5->4->3->6 显然有 paht[1][6] = 3 = paht[4][6] = paht[k][6]
于是有 path[i][j] = path[k][j]
对于 1->5 相邻边 我们可以在初始化时候 有 paht[1][5] = 1;
如是对于 最短路径 1->5->4->3->6 有 paht[1][6] = 3; paht[1][3]= 4; paht[1][4] = 5; paht[1][5] =1 如此逆推不难得到 最短路径记录值 。
-
#include "iostream"
-
#include "vector"
-
#include "stack"
-
#include "fstream"
-
using
namespace
std;
-
std::
vector<
vector<
int> > weight;
-
std::
vector<
vector<
int> > path;
-
int vertexnum;
-
int edgenum;
-
const
int intmax =
10000;
-
void initialvector(){
-
weight.resize(vertexnum);
//路径权重数组
-
path.resize(vertexnum);
//保存最短路径数组,记录前继
-
for(
int i =
0;i < vertexnum;i++){
//建立数组
-
weight[i].resize(vertexnum,intmax);
-
path[i].resize(vertexnum,
-1);
-
}
-
}
-
void getData(){
//获取数据
-
ifstream in("data");
-
in>>vertexnum>>edgenum;
-
initialvector();
-
int from,to;
-
double w;
-
while(in>>from>>to>>w){
-
weight[from][to] = w;
-
path[from][to] = from;
//to的前继是from
-
weight[from][from] =
0;
//自身到自身的权重为0
-
path[from][from] = from;
-
weight[to][to] =
0;
-
path[to][to] = to;
-
}
-
}
-
void floyd(){
-
for(
int k =
0;k < vertexnum;k++)
-
for(
int i=
0;i < vertexnum;i++)
-
for(
int j =
0;j < vertexnum;j++){
-
if((weight[i][k] >
0 && weight[k][j] && weight[i][k] < intmax && weight[k][j] < intmax) && (weight[i][k] + weight[k][j] < weight[i][j])){
//前面一部分是防止加法溢出
-
weight[i][j] = weight[i][k] + weight[k][j];
-
path[i][j] = path[k][j];
-
}
-
}
-
}
-
void displaypath(int source,int dest){
-
stack<
int> shortpath;
-
int temp = dest;
-
while(temp != source){
-
shortpath.push(temp);
-
temp = path[source][temp];
-
}
-
shortpath.push(source);
-
cout<<
"short distance:"<
endl<<
"path:";
-
while(!shortpath.empty()){
-
cout<
" ";
-
shortpath.pop();
-
}
-
}
-
int main(int argc, char const *argv[])
-
{
-
getData();
-
for(
int i =
0;i < vertexnum;i++){
-
for(
int j =
0;j < vertexnum;j++){
-
cout<
"\t";
-
}
-
cout<<
endl;
-
}
-
floyd();
-
displaypath(
2,
1);
-
return
0;
-
}
数据:
6 9
0 1 3
0 3 4
0 5 5
1 2 1
1 5 5
2 3 5
3 1 3
4 3 3
4 5 2
5 3 2
参考:http://chenchuangfeng.iteye.com/blog/1816976
http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html
http://blog.csdn.net/start0609/article/details/7779042
http://blog.csdn.net/niushuai666/article/details/6772706
http://nopainnogain.iteye.com/blog/1047818
http://blog.csdn.net/earbao/article/details/8114861
http://blog.csdn.net/roofalison/article/details/5651806