- SQLShift 重磅更新:支持 SQL Server 存储过程转换至 GaussDB!
SQLShift作为一款多元异构数据库的SQL方言转换工具,在过去两个月,陆续支持了Oracle存储过程➝OceanBase/PostgreSQL的语法转换,本期让我们一起看看又有哪些新能力吧!https://www.bilibili.com/video/BV1253jzTE8t/?aid=114792748552...新特性速览✔️SQLServer存储过程➝GaussDB函数重构:支持T-SQ
- AI+小程序新范式:智能推荐、语音交互的场景落地全攻略
AI+小程序新范式:智能推荐、语音交互的场景落地全攻略内容摘要在AI技术席卷全球的今天,小程序与AI的结合已不再是“锦上添花”,而是企业生存的“必答题”。当用户打开一个电商小程序,系统竟能提前预判其需求;当用户对着智能音箱说一句指令,小程序即刻完成从订票到推荐餐厅的“一条龙”服务——这些场景正在成为现实。但问题随之而来:智能推荐如何避免“精准骚扰”?语音交互如何突破方言和噪音的桎梏?技术背后隐藏着
- Grab×亚矩云手机:重构东南亚数字出行的“超级接口“
——从"多国拼图"到"云端一体",破解区域化与规模化的终极矛盾在东南亚这个由11个国家、6亿人口、上千种语言文化组成的碎片化市场,Grab作为超级App的代表,长期面临"本地化深不下去"与"规模化扩不出来"的双重困境:在印尼需适配300余种方言,在新加坡需满足金融管理局对支付数据的严格隔离要求,在越南需应对摩托车与汽车混行的复杂路况。亚矩云手机的介入,通过"硬件虚拟化+场景智能"的融合创新,不仅让
- 【杂谈】- AlphaGenome:解锁基因组奥秘的强大AI引擎
视觉与物联智能
杂谈人工智能AI深度学习神经网络AGIAIGC
AlphaGenome:解锁基因组奥秘的强大AI引擎文章目录AlphaGenome:解锁基因组奥秘的强大AI引擎1、解读遗传指令的挑战2、理解AlphaGenome3、突破背后的科学4、性能基准5、实际应用和研究影响6、当前的局限性和未来方向7、普及基因组AI8、展望未来9、总结人类DNA中蕴含着约30亿个遗传密码,构成了生命的神秘蓝图。然而,我们对于这本庞大“指令手册”中细胞运作方式的认知,却仅
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- HarmonyOS开发:使用语音识别的步骤演示
引言在当下的生活与工作场景中,语音识别技术早已渗透到方方面面——从手机上的语音助手快速拨打电话、发送消息,到智能音箱根据语音指令播放音乐、查询天气,再到办公场景里通过语音转文字功能高效记录会议纪要,其应用的广泛性不言而喻。而HarmonyOS在语音识别领域展现出了强大的技术实力,为用户带来了全方位的支持。它不仅能够精准识别普通话,满足大多数用户的日常需求,还兼容多种方言以及外语,极大地拓宽了使用范
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- 【读代码】PDF-Extract-Kit深度解析:最好用的RAG开源PDF解析工具
kakaZhui
pdfAIGC大模型RAGAgentDeepSeek
一、基本介绍PDF-Extract-Kit是由OpenDataLab推出的开源工具包,专注于解决复杂PDF文档的内容解析难题。该项目集成了当前最先进的文档解析模型,通过模块化设计实现灵活的功能组合,支持布局检测、公式识别、表格解析等多项核心功能。其最大特点在于:多模态解析能力:支持文字、公式、表格、图像等元素的联合解析工业级鲁棒性:在模糊扫描件、水印文档等复杂场景下仍保持高准确率开箱即用体验:提供
- 六种扎根理论的编码方法
大锤资源
学习经验分享
一、实境编码1.概念:实境编码是一种基于参与者原生语言的质性编码方法,其核心在于直接采用研究对象在访谈、观察或文本中使用的原始词汇、短语或独特表达作为分析代码。该方法通过保留数据的"原生态"语言形式(如方言、隐喻、习惯用语),强制研究者摒弃预设范畴,从底层捕捉参与者的真实认知框架和文化语境。2.目的:通过保留参与者的原始语言,实境编码帮助研究者保持对参与者生活经验的忠实表达,并避免解释性偏差。3.
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- application.yml 文件配置解析
前端小努力
springboot
application.yml文件配置解析application.yml文件是SpringBoot应用程序中用于配置各种属性的主要文件之一。它可以配置的内容非常广泛,包括但不限于以下几类:服务器配置端口号服务器地址会话管理SSL配置数据源配置数据库URL用户名和密码JDBC驱动类名连接池配置JPA和Hibernate配置DDL自动更新策略SQL显示方言配置日志配置日志级别日志文件路径安全性配置基本
- 机器视觉:ransac算法详解
无水先生
数字图形和图像处理算法计算机视觉
目录一、说明:二、算法步骤三、算法代码四、其它补充一、说明:RANSAC是一种常用的参数估计方法,全称为RandomSampleConsensus(随机抽样一致性)。它通过随机选择数据中的一部分,然后根据这些数据拟合模型,统计模型与其他数据的偏差,最终筛选出符合一定阈值的数据,用于估计参数。RANSAC可以应用于很多领域,如计算机视觉、机器人和地理信息系统等。其优点在于对噪声数据和异常值有很强的鲁
- HALCON: HALCON 20.11.0.0 Progress主要新特性
机器视觉001
HALCONHALCON
HALCON:HALCON20.11.0.0Progress主要新特性改进了基于形状的匹配在HALCON20.11中,对基于形状匹配的核心技术进行了改进,尤其是针对低对比度和高噪声的场景。现在可以自动估计更多的参数。这增加了低对比度和高噪声的情况下的可用性、匹配率和鲁棒性在。DotCode解码在HALCON20.11中,数据编码解码器已经扩展为新的编码类型DotCode。这种类型的2D代码基于一个
- 自动提示SQL:一种在资源受限环境中实现文本到SQL转换的高效架构
ZetongTang1{}^{1}1,QianMa2\mathrm{Ma}^{2}Ma2,DiWu3∗\mathrm{Wu}^{3*}Wu3∗1{}^{1}1西南大学计算机与信息科学学院,
[email protected],中国重庆2{}^{2}2西南大学计算机与信息科学学院,
[email protected],中国重庆3{}^{3}3西南大学计算机与信
- (Note)音频向量化表示
音频向量化表示经典语音特征(MFCC等)语音信号的传统特征提取方法包括MFCC(梅尔倒谱系数)、PLP等,用于描述语音的频谱包络信息。这些特征设计依据生理听觉模型,在ASR、情感识别等任务中长期有效。但它们仍属浅层特征,无法自动学习更高阶的语言和语音信息,对说话人和环境的鲁棒性有限,通常需配合复杂模型来提高性能。梅尔倒谱系数特征示意图自监督语音模型(Wav2Vec、HuBERT等)近年来,语音领域
- 九章数学体系:定义域无界化——AI鲁棒性的“隐形杀手“
九章数学体系
数学建模拓扑学人工智能神经网络
九章数学体系:定义域无界化——AI鲁棒性的"隐形杀手"摘要传统人工智能模型在面对边缘场景时常常表现出鲁棒性不足的问题,本文深入分析发现,这种现象的本质根源在于模型缺乏显式的定义域约束,导致无界化假设成为影响AI鲁棒性的"隐形杀手"。文章系统阐述了无界假设如何引发对抗样本脆弱性和数值不稳定等核心问题,并引入九章数学体系的定义域约束理论,为解决这些问题提供了全新的数学视角和工程实现路径。研究表明,通过
- 国米夏窗豪赌:奥纳纳回归+锋线强援剑指双线复兴
花开半谢
笔记
国际米兰在刚刚结束的世俱杯1/8决赛中0-2完败于弗鲁米嫩塞,冲击冠军梦想戛然而止。这场失利不仅暴露了球队的临场状态问题,更揭示了阵容的关键短板。门将位置成为焦点,高龄的索默本场表现挣扎,赛后评分仅5.9分。球迷虽认为失利非他一人之责,但其状态下滑已是不争事实。夏窗换血势在必行。一个令人瞩目的潜在选项浮出水面——回购旧将奥纳纳。媒体消息显示,曼联正积极追求维拉门神大马丁,有意出售奥纳纳腾出薪资空间
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- Android杂谈(一):悬浮球
人生游戏牛马NPC1号
androidkotlin
目录1.概述1.1什么是悬浮球(FloatingBall)1.1.1悬浮球的定义1.1.2悬浮球的基本概念1.1.3悬浮球的常见作用1.2悬浮球的应用场景与优势1.2.1悬浮球的常见应用场景1.2.2悬浮球带来的便利与优势悬浮球带来的便利与优势1.2.3设计建议1.3Android中悬浮球的实现方式简介2.悬浮球基础实现2.1创建悬浮球布局(XML设计)2.2悬浮球的显示与隐藏控制2.3悬浮球拖拽
- 图14CLIP 模型在 “分布偏移场景” 下的鲁棒性优化策略|学习笔记
学渣67656
笔记人工智能
一、先明确:左图的核心对比维度左图的横轴是“模型在标准分布上的准确率”,纵轴是“模型在分布偏移数据集上的准确率”,本质是对比“不同模型/策略在“标准性能”与“鲁棒性”之间的权衡,图中每条曲线代表一类模型/策略的“标准性能-鲁棒性”趋势,而红色箭头标注的“AdapttoImageNet”是一种“干预策略”,作用于CLIP模型后,使其性能点落在对应曲线上。二、左图中6条曲线的含义(按图例颜色+模型类型
- 水文学模型学习笔记:马斯京根(Muskingum)河道汇流算法
Lunar*
水文算法学习笔记
引言在水文学和水资源管理中,河道汇流演算是一个至关重要的环节。它用于预测洪水波在河道中向下游传播时的形态变化,是进行洪水预报、水库调度和防洪规划的基础。马斯京根法(MuskingumMethod)是其中最经典和应用最广泛的河道汇流计算方法之一。本文将从马斯京根法的基础理论出发,推导其演算方程,并重点解析一种更稳定和精确的改进方法——分段连续马斯京根法,最后提供并解读一个完整、鲁棒的Python实现
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(理解Function Calling)如何使用 Function Calling 且保证鲁棒性?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain架构
【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(理解FunctionCalling)如何使用FunctionCalling且保证鲁棒性?【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(理解FunctionCalling)如何使用FunctionCalling且保证鲁棒性?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十三章(
- 优格杂志优格杂志社优格编辑部2025年第11期部分目录
QQ296078736
人工智能
优格杂志社优格编辑部2025年第11期部分目录城市养生社区养老模式下老年人心理护理需求乌云高娃1-3走进超声医学的奇妙世界:揭秘超声技术的多样性胡丽丽4-6做有温度的产科护理,筑牢母婴安全防线鲁娜李襄君7精准翻身干预:降低压疮发生率的新方法陈思8月经紊乱与潜在疾病的关联马占兰9师者说让体育课成为生命成长的摇篮杜俊义10读说写教学模式在英语课堂如何人文化实施李刚强11巧借小学数学教学,培育学生数学思
- 微软ASR与开源模型分析
老兵发新帖
microsoft开源
一、微软ASR核心能力1.支持场景场景功能实时语音转文本低延迟流式识别(会议字幕/直播转录)音频文件转文本支持多种格式(WAV/MP3等),批量处理长音频定制化模型针对特定行业术语(医疗/金融)训练专属模型多语言混合识别中英文混合、方言识别(如中文普通话+粤语)说话人分离区分不同发言人(声纹识别)2.关键性能指标识别准确率:中文普通话>95%(安静环境)英文>96%(MicrosoftResear
- 【MPC】模型预测控制笔记 (6):不确定模型的鲁棒MPC
车队老哥记录生活
模型预测控制MPC笔记算法
目录前言不确定模型稳定性分析MATLAB实例1-忽略微小得模型参数误差MATLAB实例2-忽略模型中的非线性项附录1附录2前言致谢【模型预测控制(2022春)lecture4-2RobustMPC】不确定模型假设系统的真实模型为:xk+1=Axk+B(uk+δ1(xk,uk))+δ2(xk)(1)x_{k+1}=Ax_k+B(u_k+\delta_1(x_k,u_k))+\delta_2(x_k)
- c++11标准(5)——并发库(互斥锁)
代码小豪
c++杂谈c++
欢迎来到博主的专栏:c++杂谈博主ID:代码小豪文章目录mutex其他类型的互斥锁具有RAII的管理锁方式其他相关函数在并发的场景下,会存在线程安全的问题,其核心原因在于,线程之间会有调度切换,比如linux中基于优先级,时间片的线程调度,一个线程在运行一个时间片后,会切换到下一个线程。这就会导致一个线程未完成的任务影响到后续线程的运行,特别是那些对于临界资源的修改操作。更多关于操作系统的原理就不
- Mybatis-Plus支持多种数据库
demon7552003
数据库mybatis多数据库
使用Mybatis-Plus进行数据库的访问,但是由于不同的数据库有不同的方言,所以需要进行适配。有2种实现方式:databaseId方式MapperLocation方式指定databaseId方式通过databaseId指定所使用的数据库,选择同步的SQL。Mapper.xml设置默认*Mapper.xml文件的路径在resources/mapper/下默认*Mapper.xml文件的路径在re
- 西南站丨AI驱动仿真未来,2025 Altair区域技术交流会报名开启!
邀请函在AI技术不断演进与应用边界持续拓展的当下,仿真与人工智能、高性能计算的深度融合正在加速推动产品研发模式的智能化变革。从早期设计预测到多物理场优化,从自动化建模到仿真流程智能调度,AI增强仿真正日益成为企业构建核心竞争力的关键引擎。作为“AI驱动,仿真未来”区域巡回系列会议的重要一站,Altair将于6月27日在成都举办西南站“2025Altair区域技术交流会”,汇聚来自制造、汽车、民用航
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round