回溯法,一般可以解决如下几种问题:
组合是不强调元素顺序的,排列是强调元素顺序。
在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。
回溯算法中函数返回值一般为void。
再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。
但后面的回溯题目的讲解中,为了方便大家理解,我在一开始就帮大家把参数确定下来。
回溯函数伪代码如下:
void backtracking(参数)
既然是树形结构,那么我们在讲解二叉树的递归 (opens new window)的时候,就知道遍历树形结构一定要有终止条件。
所以回溯也有要终止条件。
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
所以回溯函数终止条件伪代码如下:
if (终止条件) {
存放结果;
return;
}
在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
如图:
注意图中,我特意举例集合大小和孩子的数量是相等的!
回溯函数遍历过程伪代码如下:
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。
backtracking这里自己调用自己,实现递归。
大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。
分析完过程,回溯算法模板框架如下:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
LeetCode 77.组合
题目描述:
给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:
输入:n = 1, k = 1
输出:[[1]]
解题思路
path.size() : 已经找的个数
k-path.size() :还需找的个数
【x, n】的数组长度起码应该是k-path.size()才有继续搜索的可能, 那么就有 n-x+1 = k-path.size() , 解方程得 x = n+1 - (k-path.size()), 而且这个x是可以作为起点往下搜的 也就是for(i = startindex; i<=x; i++) 这里的x是可以取到的
js语法
如果仅仅使用res.push(path) 那么浅拷贝 存不下 path一旦发生改变,res也会跟着改变
所以需要使用res.push([…path])
解法:
写法
/**
* @param {number} n
* @param {number} k
* @return {number[][]}
*/
var combine = function(n, k) {
let res=[],path=[];
function backtracing(startindex,k){
if(path.length==k)
{ res.push([...path])
return ;
}
for(let i=startindex;i<=n - (k - path.length) + 1;i++){
path.push(i);
backtracing(i+1,k);
path.pop();
}
}
backtracing(1,k);
return res;
};