强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym
# 超参数
BATCH_SIZE = 32
LR = 0.01 # learning rate
EPSILON = 0.9 # 最优选择动作百分比
GAMMA = 0.9 # 奖励递减参数
TARGET_REPLACE_ITER = 100 # Q 现实网络的更新频率
MEMORY_CAPACITY = 2000 # 记忆库大小
env = gym.make('CartPole-v0') # 立杆子游戏
env = env.unwrapped
N_ACTIONS = env.action_space.n # 杆子能做的动作
N_STATES = env.observation_space.shape[0] # 杆子能获取的环境信息数
from torch import nn
from 模块导入和超参数 import N_STATES,N_ACTIONS
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, ):
super(Net, self).__init__()
self.fc1 = nn.Linear(N_STATES, 10)
self.fc1.weight.data.normal_(0, 0.1) # initialization
self.out = nn.Linear(10, N_ACTIONS)
self.out.weight.data.normal_(0, 0.1) # initialization
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
actions_value = self.out(x)
return actions_value
import torch
import torch.nn as nn
import numpy as np
from 神经网络 import Net
from 模块导入和超参数 import MEMORY_CAPACITY,N_STATES,LR,EPSILON,N_ACTIONS,TARGET_REPLACE_ITER,BATCH_SIZE,GAMMA
class DQN(object):
def __init__(self):
self.eval_net, self.target_net = Net(), Net()
self.learn_step_counter = 0 # 用于 target 更新计时
self.memory_counter = 0 # 记忆库记数
self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2)) # 初始化记忆库
self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) # torch 的优化器
self.loss_func = nn.MSELoss() # 误差公式
def choose_action(self, x):
x = torch.unsqueeze(torch.FloatTensor(x), 0)
# 这里只输入一个 sample
if np.random.uniform() < EPSILON: # 选最优动作
actions_value = self.eval_net.forward(x)
action = torch.max(actions_value, 1)[1].data.numpy()[0, 0] # return the argmax
else: # 选随机动作
action = np.random.randint(0, N_ACTIONS)
return action
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, [a, r], s_))
# 如果记忆库满了, 就覆盖老数据
index = self.memory_counter % MEMORY_CAPACITY
self.memory[index, :] = transition
self.memory_counter += 1
def learn(self):
# target net 参数更新
if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
self.target_net.load_state_dict(self.eval_net.state_dict())
self.learn_step_counter += 1
# 抽取记忆库中的批数据
sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
b_memory = self.memory[sample_index, :]
b_s = torch.FloatTensor(b_memory[:, :N_STATES])
b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int))
b_r = torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2])
b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:])
# 针对做过的动作b_a, 来选 q_eval 的值, (q_eval 原本有所有动作的值)
q_eval = self.eval_net(b_s).gather(1, b_a) # shape (batch, 1)
q_next = self.target_net(b_s_).detach() # q_next 不进行反向传递误差, 所以 detach
q_target = b_r + GAMMA * q_next.max(1)[0] # shape (batch, 1)
loss = self.loss_func(q_eval, q_target)
# 计算, 更新 eval net
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
from DQN模型 import DQN
from 模块导入和超参数 import env, MEMORY_CAPACITY
dqn = DQN() # 定义 DQN 系统
for i_episode in range(400):
s = env.reset()
while True:
env.render() # 显示实验动画
a = dqn.choose_action(s)
# 选动作, 得到环境反馈
s_, r, done, info = env.step(a)
# 修改 reward, 使 DQN 快速学习
x, x_dot, theta, theta_dot = s_
r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
r = r1 + r2
# 存记忆
dqn.store_transition(s, a, r, s_)
if dqn.memory_counter > MEMORY_CAPACITY:
dqn.learn() # 记忆库满了就进行学习
if done: # 如果回合结束, 进入下回合
break
s = s_
如有问题,欢迎指正!