影像组学学习笔记(35)-基于2D超声影像的影像组学特征提取

本笔记来源于B站Up主: 有Li 的影像组学系列教学视频
本节(35)主要介绍: 2D超声影像组学的特征提取
视频中李博士情境再现了小白研究者可能碰到的各种技术难题,并演示了解决这些问题的思路。

  1. dicom格式的2D 超声图像转为压缩的nifti格式,将其命名为test.nii.gz; 勾画ROI后同样保存为压缩的nifti格式,命名为mask.nii.gz

    Fig1.jpg

  2. 尝试提取影像学特征:

import radiomics 
from radiomics import featureextractor

imageFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/test.nii.gz"
maskFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/mask.nii.gz"
extractor = featureextractor.RadiomicsFeatureExtractor()
featureVector = extractor.execute(imageFile, maskFile)
#print(featureVector.items())
for featureName in featureVector.keys():
    print("%s: %s" % (featureName, featureVector[featureName]))

出现了如下报错信息:

sitk::ERROR: Pixel type: vector of 8-bit unsigned integer is not supported in 3D byN3itk6simple26LabelStatisticsImageFilterE

  1. 按照提示,有可能是数据格式的问题。回到源代码,修改文件相应的格式,将其命名为 test1.nii.gz
import SimpleITK as sitk
import numpy as np

folderPath = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/"

reader = sitk.ImageSeriesReader()
dicom_names = reader.GetGDCMSeriesFileNames(folderPath)
reader.SetFileNames(dicom_names)
image = reader.Execute()

image_arr = sitk.GetArrayFromImage(image) # Note: order:z, y, x !!
size = image.GetSize()
origin = image.GetOrigin() #order: x, y, z
spacing = image.GetSpacing() #order:x, y, z
direction = image.GetDirection()
#print(spacing) 

pixelType = sitk.sitkInt8 #注意这里是Int8
image_new = sitk.Image(size,pixelType)

#image_arr_new = image_arr[:,:,::-1] #镜像翻转操作
image_arr_new = image_arr
#print(image_arr_new.shape)

image_new = sitk.GetImageFromArray(image_arr_new)
image_new.SetDirection(direction)
image_new.SetSpacing(spacing)
image_new.SetOrigin(origin)
sitk.WriteImage(image_new,folderPath + "test1.nii.gz")
  1. 将步骤[2]中的test.nii.gz替换为test1.nii.gz,再次执行该步骤
    此时又出现了报错信息:

sitk::ERROR: Input "labelImage" for "LabelStatisticsImageFilter" has dimension of 3 which does not match the primary input's dimension of 2!

  1. 执行 print(image_arr_new.shape) 后显示为:

(1, 900, 1600, 3)

Notes: 这里涉及python读入nifti文件的格式问题,其顺序为 z,y,x(对应这里的1,900,1600); 这里的3为不同的slice

  1. 探索这个“3”代表的意义:将每一个slice导出来,通过对比发现其中的端倪。执行代码:
image_arr_new = image_arr[:,:,:,0]
#image_arr_new = image_arr[:,:,:,1]
#image_arr_new = image_arr[:,:,:,2]
#print(image_arr_new.shape)

image_new = sitk.GetImageFromArray(image_arr_new)
image_new.SetDirection(direction)
image_new.SetSpacing(spacing)
image_new.SetOrigin(origin)
sitk.WriteImage(image_new,folderPath + "test-slice0.nii.gz")
#sitk.WriteImage(image_new,folderPath + "test-slice1.nii.gz")
#sitk.WriteImage(image_new,folderPath + "test-slice2.nii.gz")
  1. test-slice0.nii.gztest-slice1.nii.gztest-slice2.nii.gz在软件中打开,查看它们之间的差异(肉眼似乎看不出啥区别)
  2. 使用写代码的方法来探索test-slice0.nii.gztest-slice1.nii.gztest-slice2.nii.gz之间的差异(视频里李博士演示了对比前二者)
import SimpleITK as sitk
import numpy as np

slicer0 = sitk.ReadImage("test-slice0.nii.gz")
slicer1 = sitk.ReadImage("test-slice1.nii.gz")

slicer0_arr = sitk.GetArrayFromImage(slicer0)
slicer1_arr = sitk.GetArrayFromImage(slicer1)

comp = slicer0_arr == slicer1_arr
print(comp)
Fig2.jpg
  1. 将差异的部分保存为影像导出
image_arr = slicer0_arr - slicer1_arr
image_arr[image_arr != 0] = 1

size = slicer0.GetSize()
origin = slicer0.GetOrigin() #order: x, y, z
spacing = slicer0.GetSpacing() #order:x, y, z
direction = slicer0.GetDirection()

image_new = sitk.GetImageFromArray(image_arr)
image_new.SetDirection(direction)
image_new.SetSpacing(spacing)
image_new.SetOrigin(origin)
sitk.WriteImage(image_new,"comp.nii.gz")
  1. 此时在软件中打开comp.nii.gz文件,查看差异(在于右下角的水印部分)(视频中是左下角的水印)。换句话说,这3张test-slice0.nii.gztest-slice1.nii.gztest-slice2.nii.gz是一样的,差别仅在于右下角的水印。所以,后续的工作只需选择其中的一个即可。
  2. 再次查看test-slice0.nii.gz和mask文件,发现mask文件和源文件不对应。mask.nii.gz是基于test.nii.gz文件画出并保存的,但是在test.nii.gz保存为test1.nii.gz时存在一个翻转(我没有搞明白这一点),所以应重新保存一下mask文件
    Fig3.jpg
import SimpleITK as sitk
import numpy as np

folderPath = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/"
mask = sitk.ReadImage('mask.nii.gz')
mask_arr = sitk.GetArrayFromImage(mask)

reader = sitk.ImageSeriesReader()
dicom_names = reader.GetGDCMSeriesFileNames(folderPath)
reader.SetFileNames(dicom_names)
image = reader.Execute()

image_arr = sitk.GetArrayFromImage(image) # Note: order:z, y, x !!
size = image.GetSize()
origin = image.GetOrigin() #order: x, y, z
spacing = image.GetSpacing() #order:x, y, z
direction = image.GetDirection()

pixelType = sitk.sitkInt8 #注意这里是Int8
image_new = sitk.Image(size,pixelType)
mask_new = sitk.Image(size,pixelType)

#image_arr_new = image_arr[:,:,::-1] #镜像翻转操作
image_arr_new = image_arr[:,:,:,0]
print(image_arr.shape)

image_new = sitk.GetImageFromArray(image_arr_new)
image_new.SetDirection(direction)
image_new.SetSpacing(spacing)
image_new.SetOrigin(origin)

mask_new = sitk.GetImageFromArray(mask_arr) # 视频里勘误为mask_new,其实就应该是mask_arr, print二者可以看出区别来
mask_new.SetDirection(direction)
mask_new.SetSpacing(spacing)
mask_new.SetOrigin(origin)

sitk.WriteImage(image_new,"test0.nii.gz")
sitk.WriteImage(mask_new,"mask0.nii.gz")

Fig4.jpg
  1. 再次尝试提取影像组学特征(代码[2]),发现代码可以运行。但是这里有一个隐藏的bug,就是mask文件虽然重新保存了,但是并不能和原来的位置匹配。通过软件查看图像可以发现其中的区别


    Fig5.jpg
  2. 再次回到原始代码里查找问题来源

import SimpleITK as sitk
import numpy as np

folderPath = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/"
mask = sitk.ReadImage('mask.nii.gz')
mask_arr = sitk.GetArrayFromImage(mask)

#reader = sitk.ImageSeriesReader()
#dicom_names = reader.GetGDCMSeriesFileNames(folderPath)
#reader.SetFileNames(dicom_names)
#image = reader.Execute()

image = sitk.ReadImage('test.nii.gz')

image_arr = sitk.GetArrayFromImage(image) # Note: order:z, y, x !!
size = image.GetSize()
origin = image.GetOrigin() #order: x, y, z
spacing = image.GetSpacing() #order:x, y, z
direction = image.GetDirection()

pixelType = sitk.sitkInt8 #注意这里是Int8
image_new = sitk.Image(size,pixelType)
mask_new = sitk.Image(size,pixelType)

#image_arr_new = image_arr[:,:,::-1] #镜像翻转操作
image_arr_new = image_arr[:,:,:,0]
print(image_arr.shape)

image_new = sitk.GetImageFromArray(image_arr_new)
image_new.SetDirection(direction)
image_new.SetSpacing(spacing)
image_new.SetOrigin(origin)

mask_new = sitk.GetImageFromArray(mask_arr)
mask_new.SetDirection(direction)
mask_new.SetSpacing(spacing)
mask_new.SetOrigin(origin)

sitk.WriteImage(image_new,"test0.nii.gz")
sitk.WriteImage(mask_new,"mask0.nii.gz")
  1. 历尽周折,现在test0.nii.gz文件和mask0.nii.gz文件相匹配了!可以愉快地提取影像组学特征了
Fig6.jpg
import radiomics 
from radiomics import featureextractor

imageFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/test0.nii.gz"
maskFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/mask0.nii.gz"
extractor = featureextractor.RadiomicsFeatureExtractor()
featureVector = extractor.execute(imageFile, maskFile)
#print(featureVector.items())
for featureName in featureVector.keys():
    print("%s: %s" % (featureName, featureVector[featureName]))
Fig7.jpg

你可能感兴趣的:(影像组学学习笔记(35)-基于2D超声影像的影像组学特征提取)