- 《Python星球日记》第35天:全栈开发(综合项目)
Code_流苏
Python星球日记编程项目实战Python全栈开发DjangoFlask后端开发博客系统
名人说:路漫漫其修远兮,吾将上下而求索。——屈原《离骚》创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder)专栏:《Python星球日记》,限时特价订阅中ing目录一、全栈开发概述1.全栈开发的优势2.全栈开发技能组合二、博客系统项目需求分析1.功能需求2.技术栈选择3.项目结构规划三、数据库设计1.实体关系分析2.Django模型设计四、后端开发1.Django项目创建2.视图
- C语言 | 函数核心机制深度解构:从底层架构到工程化实践
钮祜禄.爱因斯晨
C语言c语言开发语言数据结构
个人主页-爱因斯晨文章专栏-C语言引言最近偷懒了,迷上了三国和李贺。给大家分享一下最喜欢的一句诗:吾不识青天高黄地厚,唯见月寒日暖来煎人寿。我还不是很理解27岁的李贺,如何写出如此绝笔。正文开始,今天我们来探讨一下关于C语言中的函数部分一、函数的概念:代码的“模块化”基石1.1函数的定义与意义定义:函数是一段可重复使用的代码块,具有输入(参数)、处理逻辑(函数体)**和**输出(返回值)。意义:复
- 铸造软件交付的“自动驾驶”系统——AI大模型如何引爆DevOps革命
LucianaiB
评测人工智能自动驾驶devops
铸造软件交付的“自动驾驶”系统——AI大模型如何引爆DevOps革命嗨,我是LucianaiB!总有人间一两风,填我十万八千梦。路漫漫其修远兮,吾将上下而求索。摘要(Abstract)本文深入探讨了人工智能大模型(AILargeModels)如何驱动DevOps从“自动化”(Automation)向“自主化”(Autonomous)的革命性跃迁。文章指出,AI大模型正成为现代软件工厂的“中枢神经系
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- Java应届生的成长之路:从迷茫到坚定的蜕变
小羊没烦恼!
职场和发展
一、初入职场的那份忐忑还记得去年夏天,我拿着毕业证书和几份Java项目经验,站在校门口时的那种迷茫。面试官问"你的职业规划是什么",我只能支支吾吾地说"想成为一名优秀的Java工程师"。那时的我,连SpringBoot的自动配置原理都说不清楚,更别提什么职业规划了。你是不是也正在经历这样的阶段?投了无数简历,参加了各种面试,却总觉得自己的技术不够扎实?别担心,每个Java大神都曾是个小白。二、我的
- YOLOv11 | SAConv与C3k2融合架构技术详解,替换传统下采样Conv
wei子
技术杂谈YOLO人工智能
YOLOv11|SAConv与C3k2融合架构技术详解,替换传统下采样Conv1.核心创新与技术价值1.1突破性设计理念本文提出的SAConv(SwitchableAtrousConvolution)可切换空洞卷积结合C3k2二次创新模块,在YOLOv11中实现了三大突破:动态感受野调节:支持[1,2,3]三种空洞率的实时切换多尺度特征融合:跨层级特征的无损传递计算效率优化:相比传统空洞卷积节省3
- 每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户_用户每日登陆脉脉会访问app不同的模块,现有两个表 表1记录了每日脉脉活跃用户的ui(1)
文章目录每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户每日语录第25题:1.需求列表1.初级题:每日活跃用户思路分析(1)创建表(2)思路答案获取加技术群讨论附表文末SQL小技巧后记每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户大家好,我是Maynor。相信大家和我一样,都有一个大厂梦,作为一名资深大数据选手,深知SQL重要性,接下来我准备用100天时间,基于大
- L国的战斗之伞兵
题目背景L国即将与I国发动战争!!题目描述为了在敌国渗透作战,指挥官决定:派出伞兵前往敌国!然而敌国的风十分强烈,能让伞兵在同一高度不停转悠,直到被刮到一个无风区……(可怜的小兵)输入输出格式输入格式:第一行:n、m两个正整数,表示敌国的大小。以下n行,每行m个字符,“u”表示风向北吹;“d”表示风向南吹;“l”表示风向西吹;“r”表示风向东吹;“o”表示无风。(上北下南,左西右东)输出格式:一个
- Python日志模块
Python日志模块学习教程:b站王铭东老师Python中logging模块能够完成相关信息的记录,在debug时使用它事半功倍一、模块介绍日志级别DEBUG、INFO、WARNING、ERROR、CRITICAL默认是WARNING,当在WARNING或其之上时才被跟踪日志格式logging.basicConfig函数中,可以指定日志的输出格式format,这个参数可以输出很多有用的信息一般使用
- ArcMap图斑四至坐标计算教程
JGiser
Arcpyarcgis
一、功能概述本教程介绍如何在ArcMap中自动计算矢量图层的每个图斑四至坐标(西、东、南、北边界点),并将结果保存到属性表中。四至坐标采用WGS84坐标系(经纬度),输出格式为:西:经度,纬度东:经度,纬度南:经度,纬度北:经度,纬度二、适用场景行政区划边界范围标注地块位置信息记录地理要素范围统计分析地图图例和位置索引制作三、两种实现方法方法一:手动操作(适合少量图斑)添加字段:右键图层→打开属性
- Python 爬虫实战:如何在东方财富网抓取股票行情数据,提升投资决策精准度
前言随着金融市场的快速发展,投资者越来越依赖于实时的股票行情数据来做出决策。在这个过程中,股票数据爬取成为了许多投资者、数据分析师和金融工程师的重要技能。通过编写一个高效的股票数据爬虫,我们可以快速抓取大量股票信息,并进行实时监控与分析,从而帮助做出更加精准的投资决策。本文将展示如何通过Python爬虫从东方财富网(东财网)抓取股票行情数据,并提供一些简单的数据分析手段,帮助用户更好地理解如何利用
- select高级——子查询
聪聪的学习笔记
数据可数据库sqlmysql
定义子查询是在一个查询的内部包括另一个查询的查询方式。简单子查询案例select*from`comment`wherecmtDate>(selectcmtDatefrom`comment`wherecmtAuthor='东东1')IN和NOTIN子查询IN案例查询名字中包含’东‘的作者评论过的所有新闻SELECT*FROMnewsWHEREidIN(SELECTnewsIdFROM`comment
- 2010暑期集训第一专题(数据结构)总结
dooder_daodao
求~道数据结构2010任务
一晃五六天就这么过去了~这一专题中,我们接触到了数据结构中的栈和队列、二叉树、哈夫曼树和字典树,以及数组中的字符匹配KMP和树的一种应用并查集,内容挺多的,看看这一大串的列举就知道了。总体上感觉:内容太多了,所以没有达到预期的效果,不过,从另一方面说,虽然学习本来就是一个循序渐进的过程,但是如果没有任务要求,这个渐进的速度也不会让人满意的。所以,内容多的另一方面是,这一专题至少让我们了解了很多的东
- RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)
爆改模型
网络深度学习人工智能计算机视觉
一、文本介绍本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(VisualStateSpaceModel)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。为了解决方向敏感性问题,VMamba引入
- 52-【JavaScript-Day 52】告别“野路子”代码:ESLint、Prettier与Web安全入门
吴师兄大模型
javascript开发语言ecmascriptjava人工智能大模型ESLint
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 道可云人工智能每日资讯|江苏首个机器人训练中心在苏州吴江启动
道可云
道可云人工智能人工智能机器人arDeepSeekxr百度
道可云人工智能&元宇宙每日简报(2025年6月26日)讯,今日人工智能&元宇宙新鲜事有:江苏首个机器人训练中心在苏州吴江启动近日,长三角一体化示范区智能机器人训练中心在东太湖度假区(太湖新城)正式启用,成为江苏省首个机器人智能训练中心。该中心占地1500平方米,设有8个训练场景和30个生产工位,涵盖智能制造、商业服务、特种应用三大领域,年产数据可超200万条,旨在加速机器人从实验室走向真实产业场景
- 非结构化数据真“野”?聊聊AI处理它时踩过的那些坑
Echo_Wish
Python进阶人工智能
非结构化数据真“野”?聊聊AI处理它时踩过的那些坑在AI圈子里有一句“老话”:真正的世界,是非结构化的。图像、音频、视频、文本、传感器原始数据……这些在数据库里没个字段、没个主键的家伙,占据了全世界80%以上的数据量。咱们都喜欢说“数据是新时代的石油”,但很少人说:非结构化数据,就是粘稠未提炼的原油——处理它,才是最累的活。这篇文章,我不想跟你讲那些“炫技”的论文和模型,而是从一个一线AI工程师的
- 设计模式(17)——中介者模式
迷惘小书童
设计模式中介者模式设计模式
中介者模式(MediatorPattern)是用来降低多个对象和类之间的通信复杂性。这种模式提供了一个中介类,该类通常处理不同类之间的通信,并支持松耦合,使代码易于维护。中介者模式属于行为型模式。前段时间要租房子,不可避免的要跟中介打交道,不用中介的话,就要直接找一房东,首先不好找房东,一个房东就一个房子,这个不满意就要找下一个房东,麻烦,而且房东找的也不容易,不如全部委托给房产中介,付点中介费省
- 大模型读过的书,终将成为人类的新血肉:一场知识炼金术的深度剖析
黑巧克力可减脂
AIGCAIGC人工智能
“吾生也有涯,而知也无涯。以有涯随无涯,殆已!”庄子千年前的慨叹,在信息爆炸的今天更显沉重。人类个体穷尽一生,所能阅读、理解、吸收的书籍不过沧海一粟。然而,一种前所未有的“数字读者”正在悄然改变这一困境——大语言模型以其近乎贪婪的“阅读”能力,正对浩如烟海的书籍进行前所未有的批量处理与深度总结。这并非冰冷的机械扫描,而是一场静默却影响深远的知识炼金术。巨量“吞噬”:大模型如何“阅读”万卷书?数据洪
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- 第6章:学徒毕业考试:模型评估的四把尺
白嫖不白嫖
深度求索-DeepSeek人工智能机器学习
第6章:学徒毕业考试:模型评估的四把尺引言:从厨房毕业到AI模型评估想象一下,你是一位刚完成30天特训的厨房学徒。师傅给你安排了一场“毕业考试”:做一道招牌菜——番茄炒蛋,由10位挑剔的顾客盲测品鉴(顾客不知道谁做的菜)。他们会根据“是否好吃”给出打分:好吃(✅)或难吃(❌)。这场考试的目的,是验证你是否能真正掌握菜谱精髓,避免成为“死记硬背的书呆子”(过拟合)或“随意发挥的野路子”(欠拟合)。在
- 四川水泥杂志四川水泥杂志社四川水泥编辑部2025年第5期目录
QQ296078736
大数据
水泥与混凝土路用高耐久性水泥混凝土的性能试验研究何亚雄;1-3基于离子选择电极法的水泥氯离子含量快速检测技术李自刚;4-6机制砂级配对混凝土和胶砂性能的影响分析郭坚强;7-9钻芯-回弹法数据处理的中欧标准对比分析千明德;李东晟;10-12+28生命周期评价技术在全固废免蒸压胶凝材料研发中的应用李俊清;吴曲江;姜作杰;吕忠涛;官志文;13-15研究与探讨基于ABAQUS的爬架雨棚副伞结构稳定性分析黄
- Python训练营---DAY54
2501_91182850
Python训练营python开发语言深度学习
DAY54Inception网络及其思考知识点回顾:传统计算机视觉发展史:LeNet-->AlexNet-->VGGNet-->nceptionNet-->ResNetinception模块和网络特征融合方法阶段性总结:逐元素相加、逐元素相乘、concat通道数增加等感受野与卷积核变体:深入理解不同模块和类的设计初衷作业:一次稍微有点学术感觉的作业:对inception网络在cifar10上观察精
- 怎么判断日出时间早晚_日出日落时间早晚比较
偏偏无理取闹
怎么判断日出时间早晚
日出日落时间早晚比较关于日出时间早晚的比较可以分为四类:1、在同一地点,海拔越高的地方越先看到日出;日落越晚。所以在飞机上看日出早,日落晚。2、在同一纬度上的两地,越东边的地点越先看到日出(不考虑地形因素的影响);相同纬度昼长相等,经度越东,日出越早,日落也早。3、在同一经度上的两地,白昼越长的地点越先看到日出(不考虑地形因素的影响);地方时相同,白昼越长,日出越早,日落越晚。4、在经度和纬度均不
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- 10个受欢迎的wordpress外贸主题
wodrpress资源分享
wordpresswordpress
Doge东哥wordpress英文外贸模板Doge东哥WordPress英文外贸模板是一款专为中小型企业设计的外贸网站模板,适合机器、设备、机械等行业外贸出海建英文版网站。以下是该模板的主要特点:设计风格简洁大气:首页设计简洁明了,顶部导航栏清晰展示网站主要栏目,包括首页、关于我们、新闻、产品、案例、页面和联系方式。响应式设计:支持多设备浏览,确保网站在桌面、平板和移动设备上都能提供良好的用户体验
- 【AI大模型入门指南】提示词Prompt工程详解
GeorgeGcs
AI人工智能prompt提示词框架提示词优化AI
【AI大模型入门指南】提示词Prompt工程详解一、前言提示词是什么?很多人在接触AI大模型,最常见的就是对于自己描述的需求,AI大模型的反馈却不尽人意。你说东,它却表达西。而所谓的描述需求,就是提示词Prompt。而返回不尽人意,除了大模型能力的问题之外,很常见的是我们提出的诉求不清,不明确。(AI大模型,即LLM是“LargeLanguageModel”的缩写,中文通常译为大型语言模型,是一种
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- 世界各国区号代码及时差
云博客-资源宝
世界各国区号代码及时差
资源宝整理分享:https://www.httple.net按Ctrl+F搜索CountriesandRegions国家或地区国际域名缩写电话代码时差Angola安哥拉AO244-7Afghanistan阿富汗AF93-3.5Albania阿尔巴尼亚AL355-7Algeria阿尔及利亚DZ213-7Andorra安道尔共和国AD376-8Anguilla安圭拉AI1264-13Antiguaan
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号