- Centos7 搭建 Jupyter + Nginx 服务
某龙兄
pythonnginxlinuxcentos
JupyterNotebook(此前被称为IPythonnotebook)是一个交互式笔记本,支持运行40多种编程语言。JupyterNotebook的本质是一个Web应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。本文讲述如何搭建Jupyter+Nginx服务,仅供学习与交流,请勿用于商业用途一
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- 【CUDA】Pytorch_Extensions
joker D888
深度学习pytorchpythoncudac++深度学习
【CUDA】Pytorch_Extensions为什么要开发CUDA扩展?当我们在PyTorch中实现自定义算子时,通常有两种选择:使用纯Python实现(简单但效率低)使用C++/CUDA扩展(高效但需要编译)对于计算密集型的操作(如神经网络中的自定义激活函数),使用CUDA扩展可以获得接近硬件极限的性能。本文将以实现一个多项式激活函数x²+x+1为例,展示完整的开发流程。完整CUDA扩展代码解
- 【自然语言处理|迁移学习-08】:中文语料完型填空
爱学习不掉头发
深度学习自然语言处理(NLP)自然语言处理迁移学习人工智能
文章目录1中文语料完型填空任务介绍2数据集加载及处理3定义下游任务模型4模型训练5.模型测试1中文语料完型填空任务介绍任务介绍:完成中文语料完型填空完型填空是一个分类问题,[MASK]单词有21128种可能数据构建实现分析:使用迁移学习方式完成使用预训练模型bert模型提取文特征,后面添加全连接层和softmax进行单标签多分类2数据集加载及处理数据介绍:数据文件有三个train.csv,test
- 改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积
wei子
YOLO目标跟踪人工智能
改进YOLO系列:动态蛇形卷积(DynamicSnakeConvolution,DSC)简介YOLO系列目标检测算法以其速度和精度著称,但对于细长目标例如血管、道路等,其性能仍有提升空间。动态蛇形卷积(DSC)是YOLOv5/v7中引入的一种改进,旨在更好地处理细长目标。DSC原理DSC的核心思想是使用类似蛇形运动的卷积核来提取细长目标的特征。具体来说,DSC卷积核沿着一系列控制点移动,并根据每个
- 《神经网络与深度学习》(邱锡鹏) 内容概要【不含数学推导】
code_stream
#机器学习神经网络
第1章绪论基本概念:介绍了人工智能的发展历程及不同阶段的特点,如符号主义、连接主义、行为主义等。还阐述了深度学习在人工智能领域的重要地位和发展现状,以及其在图像、语音、自然语言处理等多个领域的成功应用。术语解释人工智能:旨在让机器模拟人类智能的技术和科学。深度学习:一种基于对数据进行表征学习的方法,通过构建具有很多层的神经网络模型,自动从大量数据中学习复杂的模式和特征。第2章机器学习概述基本概念:
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- 《编程小白必看!字符加减法开启大小写转换之门,解锁数学分析方法密码,列方程思想》
1zero10
c语言算法
字符加减法的应用1.输入小写字母,输出大写字母首先肯定有定义变量ch;并且让我们可以在黑框输入一个变量,也就是任意一个小写字母charch;scanf("%c\n",ch);接着分析小写字母和大写字母的联系:举例分析,比如b在小写字母表排第二位,而B在大写字母表里也排第二位小写字母和大写字母都有26个所以可以利用排位一致的特点进行方程的构造设小写字母为ch(上面已经设了)设大写字母为y到这里还毫无
- #渗透测试#批量漏洞挖掘#畅捷通T+远程命令执行漏洞
独行soc
漏洞挖掘安全web安全面试漏洞挖掘远程命令执行漏洞
免责声明本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。目录一、漏洞概况二、攻击特征三、应急处置方案四、深度防御建议五、后续监测要点六、漏洞POC一、漏洞概况技术原理漏洞存在于T+系统的特定接口组件,攻击者可通过构造恶意HTTP请求绕过身份验证,在
- JS宏实例:数据透视工具的制作(三)
jackispy
JS宏实例javascript前端java
数据透视工具的制作(二)中详细展示了窗体设计思路及想要实现的功能,在本节中,将完成该工具中的核心计算代码,如分组求和、计数、累乘等的实现方式。在这里,我们可以构思两个类:TablePivot:主要用于管理数据矩阵,包括自动识别列数据类型,以及实现数据分组功能。GroupBy:对分组后的数据进行各种统计操作,例如求和、计数、求平均值等。一、TablePivot类1、示例代码classTablePiv
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- sklearn.ConfusionMatrixDisplay可视化混淆矩阵
Cachel wood
python机器学习和数据挖掘sklearn矩阵人工智能python机器学习vue.jsjava
文章目录ConfusionMatrixDisplay详细解释更多定制化ConfusionMatrixDisplayConfusionMatrixDisplay是scikit-learn库中用于可视化混淆矩阵的一个实用工具。混淆矩阵是一种常用的评估分类模型性能的工具,它可以直观地展示模型在各个类别上的预测结果与真实标签之间的关系。下面详细介绍如何使用ConfusionMatrixDisplay进行混
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 灰色系统理论及其关联分析方法
青橘MATLAB学习
算法matlab数学建模
前言在现实世界中,许多系统的内部结构、参数及特征并未完全被人们认知。例如,粮食产量受肥料、气象、政策等多因素影响,但各因素与产量间的定量关系难以明确。这类部分信息已知、部分信息未知的系统被称为灰色系统。灰色系统理论从数据本征特性出发,通过有限信息挖掘系统规律,为信息匮乏或紊乱的问题提供建模与分析方法。本章将介绍灰色系统的基本概念及其核心方法——关联分析,揭示如何通过动态态势量化解决实际问题。§1灰
- 刷题day27 动态规划(一)【斐波那契数】【爬楼梯】【使用最小花费爬楼梯】
哈哈哈的懒羊羊
动态规划算法数据结构蓝桥杯java面试背包问题
⚡刷题计划day27动态规划(一)开始,第三期后是背包专题,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录什么是动态规划动态规划的解题步骤题目一:509.斐波那契数题目二:70.爬楼梯题目三:746.使用最小花费爬楼梯什么是动态规划动态规划,英文:DynamicProgramming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。特征:一个问题,可以拆
- NFC碰一碰发视频源码高质量矩阵宣传视频,支持OEM
余~~18538162800
python开发语言音视频
一、引言在当今竞争激烈的商业环境中,创新的拓客方式对于企业的生存与发展至关重要。NFC(NearFieldCommunication)碰一碰技术的出现,为营销领域带来了新的机遇。结合视频传播的强大影响力,NFC碰一碰发视频拓客系统应运而生。本文将深入探讨该系统的源码搭建过程,并详细阐述如何实现对OEM(原始设备制造商)的支持,为开发者和企业提供一套全面的技术指南。二、系统架构设计(一)NFC交互层
- Pytorch实现之利用特征分布的差异来指导GAN的训练
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉机器学习
简介简介:FIDGAN通过将FID损失引入GAN的训练过程,显著提升了生成图像的质量。其核心思想是利用特征分布的差异来指导生成器的训练,同时通过使用轻量级的MobileNet-v3提高了计算效率。这种方法在图像生成任务中具有广泛的应用前景。论文题目:FIDGAN:AGenerativeAdversarialNetworkwithAnInceptionDistance(FIDGAN:具有初始距离的生
- 59.python的类与对象
安迪python学习笔记
Python基础知识python开发语言
59.python的类与对象文章目录59.python的类与对象1.什么是类?2.作用3.Python中的类4.type函数查看数据类型5.什么是对象?1.什么是类?日常生活中,我们可能会听到这样的对话:物以类聚,人以群分。这一类的面包真的很难吃。这一类水果对身体很好。【类的中文释义】类是对一类事物的概括,是许多相似或相同事物的综合。这些事物各不相同,但具有一些共同的特征或行为。【示例】类名:花百
- 流形拓扑学:Chern数与Euler示性数
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
流形拓扑学:Chern数与Euler示性数1.背景介绍流形拓扑学是数学中一个重要的分支,研究流形的拓扑性质。流形是局部类似于欧几里得空间的空间,广泛应用于物理学、计算机科学和工程学等领域。Chern数和Euler示性数是流形拓扑学中的两个重要不变量,它们在描述流形的几何和拓扑性质方面起着关键作用。Chern数是由中国数学家陈省身提出的,主要用于描述复流形的特征类。Euler示性数则是一个更为古老的
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- DeepSeek接入大数据能做什么
PersistDZ
大数据与AI大数据
DeepSeek作为一家专注于AGI和AI大模型技术的公司,在大数据领域可以通过以下方式切入,结合其核心能力提供创新解决方案:一、DeepSeek接入大数据领域的技术路径多模态数据处理能力支持文本/图像/视频/传感器数据的统一处理自主研发的MoE(MixtureofExperts)架构可并行处理异构数据超大规模特征工程基于千亿参数模型的自动特征提取支持非结构化数据的深度语义解析实时计算优化自研分布
- 自然语言处理NLP 01语言转换&语言模型
伊一大数据&人工智能学习日志
自然语言处理自然语言处理人工智能语言模型nlp机器学习深度学习
目录语言转化方式1.数据预处理(DataPreprocessing)(1)文本清理(2)分词(3)语言特殊处理2.特征提取(FeatureExtraction)(1)词袋模型(BagofWords,BoW)(2)TF-IDF(3)词嵌入(WordEmbedding)3.模型输入(ModelInput)(1)序列编码(2)预训练模型输入4.模型推理(ModelInference)(1)使用传统模型(
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- Hu矩的原理及应用
Ring__Rain
算法人工智能机器学习
什么是Hu矩Hu矩是一种描述图像形状特征的数学工具,核心思想:提取图像的形状信息,并对这些信息进行归一化,使得它们对图像的平移、旋转和缩放具有不变性。简单说,Hu矩就是一串数字,这串数字可以唯一的描述图像的形状特征,而且不管图像怎么移动、旋转和缩放,这组数字都不变。Hu矩的原理1,几何矩:图像的像素值的加权和,可以用来描述图像的形状。如:零阶矩(面积):图像中所有像素值的总和;一阶矩(质心):图像
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- Python librosa库:一款强大的音频处理工具
程序员喵哥
python音视频开发语言
更多Python学习内容:ipengtao.com在音频信号处理和音乐分析中,如何高效地加载、分析和转换音频数据是一个核心问题。librosa是一个专为音频分析设计的Python库,提供了丰富的工具来处理音频信号。无论是计算音频特征(如频谱、节拍)还是执行音频变换(如频率变换、时间拉伸),librosa都是一个功能强大且易于使用的选择。安装在开始使用librosa之前,需要先安装它。可以通过以下命
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- 【nvidia】NCCL禁用P2P后果权衡
x66ccff
linuxp2p服务器网络协议
通信bound还是计算bound?计算bound场景:模型参数量较小(如参数量未超出单卡显存容量,使用纯数据并行)或计算密度极高(如大batchsize下的矩阵运算)时,A100的计算能力(FP16/FP32算力)可能被充分利用,此时训练是计算bound。某些优化技术(如梯度累积、算子融合)可能掩盖通信开销,使计算成为主要瓶颈。通信bound场景:模型参数量极大(如千亿级以上),需采用模型并行或流
- YOLOv11算法与改进版YOLOv11算法对比:性能提升与优化
m0_54717829
YOLO算法目标跟踪
YOLOv11算法与改进版YOLOv11算法对比:性能提升与优化提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录YOLOv11算法与改进版YOLOv11算法对比:性能提升与优化前言一、YOLOv11算法概述二、训练步骤2.验证数据的数据代码2.改进版YOLOv11算法的创新a.改进的特征提取网络b.多通道特征融合机制c.自适应损失函数d.动态推理优化3.改进版YOLOv11
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri