- DynamicSparse-MobileNet (DSMNet) 用于低功耗图像分类
闲人编程
人工智能实战教程—论文创新点分类人工智能数据挖掘DSMNet动态稀疏熵感知自适应
目录DynamicSparse-MobileNet(DSMNet)用于低功耗图像分类一、模型背景与动机二、模型创新点详细解析1.动态稀疏计算路径2.自适应通道缩放3.熵感知知识蒸馏三、数据集与预处理四、网络结构详解1.输入层与熵估计模块2.动态稀疏卷积块3.熵感知分类头五、模型优化策略1.优化器设计——Prodigy优化器2.动态计算损失3.损失函数设计4.正则化技术5.防止过拟合六、网络结构图与
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 【数学建模】基于matlab模拟无人车泊车问题仿真
matlab科研助手
数学建模matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍无人驾驶汽车技术近年来取得了飞速发展,其中自动泊车功能是关键技术之一。本文将重点讨论无
- 图像分类项目 2.28
不要不开心了
人工智能机器学习数据挖掘python深度学习
今天的内容是图像分类项目一.图像分类将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界1.通用的多类别图像分类2.子类细粒度图像分类3.实例级图片分类二.图像分类评估指标TP(Truepositive,真正例):将正类预测为正类数。FP(Falsepositive,假正例):将反类预测为正类数。TN(Truenegative,真反例):将反类预测为反类数。FN(Falsen
- 数学建模:MATLAB极限学习机解决回归问题
DesolateGIS
数学建模数学建模matlab开发语言
一、简述极限学习机是一种用于训练单隐层前馈神经网络的算法,由输入层、隐藏层、输出层组成。基本原理:输入层接受传入的样本数据。在训练过程中随机生成从输入层到隐藏层的所有连接权重以及每个隐藏层神经元的偏置值,这些参数在整个训练过程中不会被修改。前向传播:输入数据通过已设定的权重和偏置传递给隐藏层,经过激活函数处理后产生隐藏层的输出。在得到隐藏层输出后,需找到从隐藏层到输出层的最佳权重。隐藏层到输出层的
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 神经架构搜索 原理与代码实例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
神经架构搜索:原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习的快速发展,神经网络在各个领域取得了显著的成果。然而,设计一个高效、通用的神经网络架构仍然是一个具有挑战性的问题。手动设计网络架构需要大量的专业知识和经验,而且往往效率低下。因此,神经架构搜索(NeuralArchitectureS
- NLP自然语言处理:文本表示总结 - 上篇word embedding(基于降维、基于聚类、CBOW 、Skip-gram、 NNLM 、TF-ID、GloVe )
陈宸-研究僧
NLP自然语言处理
文本表示分类(基于表示方法)离散表示one-hot表示词袋模型与TF-ID分布式表示基于矩阵的表示方法降维的方法聚类的方法基于神经网络的表示方法NNLMCBOWSkip-gramGloVeELMoGPTBERT目录一、文本离散表示1.1文本离散表示:one-hot1.2文本离散表示:词袋模型与TF-IDF1.2.1词袋模型(bagofwords)1.2.2对词袋模型的改进:TF-IDF二、文本分布
- 【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
然哥爱编程
深度学习cnnlstm
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述摘要:深度学习模型的超参数选择对模型的性能和泛化能力具有重要影响。本文提出了一种基于鲸鱼算法(WOA)优化长短期记忆神经网络(LSTM)模型的超参数选择方法。首先,我们介绍了LSTM模型的结构和训练过程。然后,我们
- 反向传播(Backpropagation)直觉理解
忍者算法
算法机器学习人工智能深度学习
反向传播(Backpropagation)直觉理解1.为什么要有反向传播?想象你在练习投篮,目标是让篮球进框。但你一开始投的方向可能偏左、偏右,或者力道过大、过小。每次投篮后,你会观察球偏离篮筐的情况,并调整投篮方式,让下次投得更准。神经网络的学习过程就像练习投篮:投篮→神经网络做出预测观察偏差(进没进)→计算误差调整投篮方式→调整神经网络的参数但问题是:你怎么知道该往哪个方向调整?你怎么知道该调
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- Transformer 代码剖析7 - 词元嵌入(TokenEmbedding) (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、类定义与继承关系剖析1.1代码结构图示神经网络基础模块词嵌入基类自定义词元嵌入构造函数定义基类初始化词汇量参数维度参数填充标识参数1.2代码实现精讲"""@author:Hyunwoong@when:2019-10-22@homepage:https://github.com/gusdnd852"""fromtorchimportnnclassTokenEmbedding(nn.Embeddi
- 卷积神经网络(Convolutional Neural Network,CNN)详细解释(带示例)
浪九天
人工智能理论人工智能神经网络深度学习机器学习
目录卷积神经网络示例Python案例代码解释卷积神经网络概述:卷积神经网络是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型。它通过卷积层、池化层和全连接层等组件,自动提取数据的特征,大大减少了模型的参数数量,降低计算量,同时提高了模型的泛化能力。主要组件卷积层:是CNN的核心组件,由多个卷积核组成。卷积核在数据上滑动,通过卷积操作提取数据的局部特征。卷积操作是将卷积核与数据的局
- matlab连接散射点,使用小波散射做信号分类
死月絲卡蕾特
matlab连接散射点
在时间序列信号的深度学习第二部分,我们将介绍一下怎样使用小波散射做信号分类。本视频将分为两部分。第一部分中我们已经简单介绍一下深度学习,包括它的概念和工作流程等。并且我们演示了如何用时频变换,和基于卷积神经网络的迁移学习来做心电图信号的分类。第二部分中我们将首先介绍什么是小波散射,之后将聚焦在怎样使用小波散射技术也就是不变散射卷积网络做自动特征提取,和使用长短期记忆网络也就是LSTM(LongSh
- 周志华机器学习西瓜书 第五章 神经网络-学习笔记(超详细)
Sodas(填坑中....)
周志华西瓜书——详细笔记附例题图解机器学习神经网络学习人工智能数据挖掘算法
在机器学习中,神经网络一般指的是"神经网络学习",是机器学习与神经网络两个学科的交叉部分。所谓神经网络,目前用的最广泛的一个定义是"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体做出交互反应"。神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助
- 2W8000字 LLM架构文章阅读指北
人工智能
大模型架构专栏已经更新了30多篇文章。完整的专栏内容欢迎订阅:LLM架构专栏1、LLM大模型架构专栏||从NLP基础谈起2、LLM大模型架构专栏||自然语言处理(NLP)之建模3、LLM大模型架构之词嵌入(Part1)3、LLM大模型架构之词嵌入(Part2)3、LLM大模型架构之词嵌入(Part3)4、LLM架构从基础到精通之Word2Vec训练全解析5、LLM架构从基础到精通之循环神经网络(R
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN解析
大模型_学习路线
深度学习cnntransformer人工智能AI大模型大模型LLM
今天探讨它们各自适用的场景,让您知道在何种情况下选择何种模型;同时分析它们的优势与局限,助您全面评估这些模型的性能。一、卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分
- 3.4.4- 先颜色后形状的方式 STM32串口通信 openmv+STM32串口通信 openmv串口通信openmv识别物体 openmv神经网络训练 openmv数字识
好家伙VCC
stm32神经网络嵌入式硬件单片机硬件工程51单片机嵌入式实时数据库
非常详细的视频和文字教程,讲解常见的openmv教程包括巡线、物体识别、圆环识别、阈值自动获取等。非常适合学习openmv、K210、K230等项目视频合集链接在:openmv教程合集openmv入门到项目开发openmv和STM32通信openmv和opencv区别openmv巡线openmv数字识别教程LCD3.4.4-先颜色后形状的方式可以再试试先颜色后形状的识别方式。importsenso
- 3.4.5-识别形状+颜色+增加最小变化阈值 STM32串口通信 openmv+STM32串口通信 openmv串口通信openmv识别物体 openmv神经网络训练 openmv数字识
好家伙VCC
stm32神经网络嵌入式硬件硬件工程单片机机器学习人工智能
非常详细的视频和文字教程,讲解常见的openmv教程包括巡线、物体识别、圆环识别、阈值自动获取等。非常适合学习openmv、K210、K230等项目视频合集链接在:openmv教程合集openmv入门到项目开发openmv和STM32通信openmv和opencv区别openmv巡线openmv数字识别教程LCD3.4.5-识别形状+颜色+增加最小变化阈值在形状+颜色的识别效果中,发现小球是不动,
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- 2.28 图像分类全解析:从境界到评估,再到模型与样本处理
不要天天开心
机器学习算法人工智能
图像分类将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界:通用的多类别图像分类子类细粒度图像分类实例级图片分类图像分类评估指标之混淆矩阵:TP(Truepositive,真正例)——将正类预测为正类数。FP(Falsepostive,假正例)——将反类预测为正类数。TN(Truenegative,真反例)——将反类预测为反类数。FN(Falsenegative,假反例)—
- 指数移动平均(EMA)策略
Sherry Wangs
深度学习深度学习python机器学习
文章目录概述具体步骤代码实现概述指数移动平均(EMA)是一种加权移动平均的方法,它给予近期数据更高的权重,同时也考虑到了历史数据的影响。在神经网络领域,EMA常被用于对模型参数进行平滑处理,使得网络模型在训练过程中能够更加稳定且泛化能力可能得到提升。具体步骤假设我们有一个神经网络模型,其参数为θ\thetaθ(例如权重矩阵和偏置向量等),我们要使用EMA策略来更新这些参数。初始化EMA参数:设θe
- Pytorch神经网络魔改之:模型融合 - 速通(1)
lczdyx
pytorch神经网络深度学习python人工智能
本文将以几种常见方法为例,介绍如何进行Pytorch神经网络的模型融合:1.子模型串联(SequentialConcatenation)在这个方法中,输入数据x首先通过FeatureExtractor(即:子模型1),处理后的结果再传递给Classifier(即:子模型2)。最后,返回Classifier的输出。这种方式允许将两个子模型串联起来,形成一个组合模型:importtorch.nnasn
- python代码实现支持神经网络对鸢尾花分类
邀_灼灼其华
机器学习及概率统计python神经网络分类sklearn
1、导入支持向量机模型,划分数据集fromsklearnimportdatasetsfromsklearnimportsvmiris=datasets.load_iris()iris_x=iris.datairis_y=iris.targetindices=np.random.permutation(len(iris_x))iris_x_train=iris_x[indices[:-10]]iri
- 构建神经网络之sklearn(完善)
邪恶的贝利亚
神经网络sklearn机器学习
1.数据预处理1.缺失值importpandasaspd#假设我们有一个DataFramedfprint(df.isnull().sum())#查看每一列缺失值的数量数值型数据:fromsklearn.imputeimportSimpleImputer#对于数值型数据,使用均值填充imputer=SimpleImputer(strategy='mean')#可选:'mean','median','
- pytorch与深度学习随记——AlexNet
黑色的山岗在沉睡
深度学习随记深度学习pytorch人工智能
AlexNet和LeNet的设计理念非常相似,但也存在显著差异:基本结构对比网络深度:AlexNet比LeNet-5要深得多,AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。激活函数:AlexNet使用ReLU而不是sigmoid作为其激活函数,这有助于缓解梯度消失问题并加速训练过程。AlexNet架构的创新点局部响应归一化(LRN):AlexNet引入LRN层,可以创建
- 从零到精通:小白DeepSeek全栈入门指南
好东西不迷路
各自资源AI前端htmlpython
第一部分:认知准备(1-3天)1.1基础概念搭建人工智能三要素:数据/算法/算力深度学习与传统机器学习的区别神经网络基本结构(输入层/隐藏层/输出层)常用术语解析:epoch、batch、loss、accuracy1.2环境配置实战Python环境搭建(推荐Anaconda)condacreate-ndeepseekpython=3.8condaactivatedeepseek深度学习框架选择指南
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p