- 2023考研数一真题及答案
猿六凯
考研
历年数一真题及答案下载直通车曲线y=xln(e+1x−1)y=x\ln(e+\frac{1}{x-1})y=xln(e+x−11)的渐近线方程为()(A)y=x+ey=x+ey=x+e(B)y=x+1ey=x+\frac{1}{e}y=x+e1©y=xy=xy=x(D)y=x−1ey=x-\frac{1}{e}y=x−e1若微分方程y′′+ay′+by=0y''+ay'+by=0y′′+ay′+
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 模拟多维物理过程与基于云的数值分析-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
高维输运与扩散方程,涵盖了严格的扩散极限、多维扩散理论、先进的数值和基于粒子的模拟方法,以及分数阶/电报式推广,为广泛的科学和工程领域中复杂输运现象的建模、分析和模拟提供了强大的工具。高维输运和扩散方程涵盖了输运方程的严格扩散极限、结合随机和偏微分方程工具的多维扩散理论、先进的数值和基于粒子的模拟方法、分数阶和电报式输运的推广,以及在地球物理和工程系统中的应用。这些框架为建模、分析和模拟许多科学和
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 结构力学数值方法:谐波平衡法:高级谐波平衡法技术_2024-08-05_22-46-19.Tex
chenjj4003
材料力学2算法线性代数矩阵决策树人工智能
结构力学数值方法:谐波平衡法:高级谐波平衡法技术绪论谐波平衡法简介谐波平衡法(HarmonicBalanceMethod,HBM)是一种用于求解非线性振动系统周期解的数值方法。它通过将系统的响应表示为一系列谐波函数的线性组合,然后利用傅里叶级数展开,将非线性微分方程转换为一组代数方程,从而简化了求解过程。这种方法特别适用于分析具有周期性激励的非线性系统,如机械振动、电路振荡等。高级谐波平衡法技术的
- Flux Reconstruction(FR,通量重构)方法
东北豆子哥
重构算法人工智能
文章目录FluxReconstruction(FR,通量重构)方法**核心思想****关键步骤****优势****文献推荐****注意事项**FluxReconstruction(FR,通量重构)方法FluxReconstruction(FR,通量重构)方法是一种高阶精度的数值计算框架,主要用于求解偏微分方程(尤其是双曲守恒律方程),在计算流体力学(CFD)等领域有广泛应用。它结合了间断有限元法(
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- Python之scipy(算法/数学工具)用法
薛毅轩
python
scipy是一个开源的Python算法库和数学工具包,它基于NumPy,提供了许多用于数学、科学和工程的算法。scipy包含了统计、优化、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解等模块。以下是一些scipy库的基本用法示例:1.特殊函数scipy.special模块提供了许多数学上的特殊函数。fromscipyimportspecial#计算阶乘和组合数factor
- 偏微分方程通解与初值问题求解2
weixin_30777913
算法
题目问题1.(a)求下列各方程的通解:ut+3ux−2uy=0;ut+xux+yuy=0;ut+xux−yuy=0;ut+yux+xuy=0;ut+yux−xuy=0.u_t+3u_x-2u_y=0;\quadu_t+xu_x+yu_y=0;\\u_t+xu_x-yu_y=0;\quadu_t+yu_x+xu_y=0;\\u_t+yu_x-xu_y=0.ut+3ux−2uy=0;ut+xux+yu
- [ 常微分方程 ] 01 ODE积分曲线和方向场可视化(Python)
有梦想的西瓜
数学python
今天老师布置了个一阶线性微分方程的python可视化作业,由于作者本人水平有限(爆哭),之后再把非线性和高阶微分方程学会了再一并补充进来。文章目录一阶微分方程一阶线性微分方程基本概念积分曲线:方向场图:等倾斜线图:例子1:dydx=x2−y\frac{dy}{dx}=x^2-ydxdy=x2−y例子2:dydx=x−y\frac{dy}{dx}=x-ydxdy=x−y一阶微分方程一阶线性微分方程基
- matlab求解常微分方程的实验,实验五 - - 用matlab求解常微分方程
胡千山
实验五用matlab求解常微分方程1.微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为F(t,y,y',y\,?,y(n))?0如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知
- matlab方程求解的实验,实验七用matlab求解常微分方程
蔡振原
matlab方程求解的实验
《实验七用matlab求解常微分方程》由会员分享,可在线阅读,更多相关《实验七用matlab求解常微分方程(7页珍藏版)》请在人人文库网上搜索。1、实验七用matlab求解常微分方程一、实验目的:1、熟悉常微分方程的求解方法,了解状态方程的概念;2、能熟练使用dsolve函数求常微分方程(组)的解析解;3、能熟练应用ode45ode15s函数分别求常微分方程的非刚性、刚性的数值解;4、掌握绘制相图
- 基于云计算的振动弦分析:谐波可视化与波动方程参数理解-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
振动弦方程是一个基础的偏微分方程,它描述了弹性弦的横向振动。其应用范围广泛,不仅可用于模拟乐器和一般的波动现象,更是数学物理以及深奥的弦理论中的重要基石。☁️AI云计算数值分析和代码验证振动弦方程是描述固定两端弹性弦横向振动的基本偏微分方程(PDE),其典型表达式为:∂2u∂t2=c2∂2u∂x2\frac{\partial^2u}{\partialt^2}=c^2\frac{\partial^2
- Python实例题:使用Python 解数学方程
狐凄
实例python开发语言
目录Python实例题题目1.解代数方程(如一元二次方程)2.使用SymPy解符号方程3.使用NumPy解线性方程组4.使用SciPy解非线性方程5.解微分方程总结Python实例题题目使用Python解数学方程1.解代数方程(如一元二次方程)对于简单的代数方程,可以直接使用求根公式:importmathdefsolve_quadratic(a,b,c):"""解一元二次方程ax²+bx+c=0"
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- 振动力学:弹性杆的纵向振动(固有振动和固有频率的概念)
Wang的王
经典力学笔记笔记
文章1、2、3中讨论的是离散系统的振动特性,然而实际系统的惯性质量、弹性、阻尼等特性都是连续分布的,因而成为连续系统或分布参数系统。确定连续介质中无数个点的运动需要无限个广义坐标,因此也称为无限自由度系统,典型的结构例如:弦、杆、膜、环、梁、板、壳等,也称为弹性体。弹性体的微振动通常由偏微分方程描述。本文研究弹性杆的纵向振动特性。1.弹性杆纵向振动方程1.1振动方程某一直杆长为lll,沿杆件的轴线
- COMSOL Multiphysics软件二次开发:COMSOL软件在固体力学中的应用
kkchenjj
仿真模拟工业软件仿真模拟工业软件二次开发开发语言
COMSOLMultiphysics软件二次开发:COMSOL软件在固体力学中的应用COMSOLMultiphysics概述COMSOLMultiphysics是一款强大的多物理场仿真软件,它允许用户通过数值方法求解偏微分方程,从而模拟各种物理现象。软件的核心功能在于其灵活的建模环境和多物理场耦合能力,使得用户能够在一个统一的界面下,对涉及多种物理场的复杂问题进行仿真和分析。特点与应用多物理场耦合
- MATLAB实战:传染病模型仿真实现
三三十二
matlab开发语言
以下是一个使用MATLAB实现传染病模型(SIR和SEIR)仿真的完整解决方案,包含参数分析和干预措施模拟:%%传染病模型仿真工具箱%包含SIR、SEIR模型,支持参数调整和干预措施模拟%使用ode45求解微分方程functionepidemic_modeling()%主控制界面fig=uifigure('Name','传染病模型仿真','Position',[100100800600]);%模型
- 二阶线性微分方程的通解与特解
debug_running_Hu
线性代数算法机器学习学习
二阶线性微分方程的通解与特解二阶线性微分方程的一般形式为:a(x)y′′+b(x)y′+c(x)y=f(x)a(x)y''+b(x)y'+c(x)y=f(x)a(x)y′′+b(x)y′+c(x)y=f(x)其中,a(x),b(x),c(x)为系数函数,f(x)为非齐次项。1.齐次方程(f(x)=0):当f(x)=0时,方程变为齐次方程:a(x)y′′+b(x)y′+c(x)y=0a(x)y''+
- 泛函分析基础11-线性算子的谱1:谱的概念
u013250861
泛函分析基础泛函分析
谱论是泛函分析的重要分支之一.线性代数告诉我们:有限维空间上的线性算子由它的特征值和最小多项式完全确定.将这一结论推广到有界线性算子的情况,研究它的结构,就是算子的谱理论所谓算子的"谱",类似于有限维空间上算子—一矩阵的特征值.而无限维空间上的算子谱论,也就相当于把矩阵化为若尔当标准形.由于特征值和逆算子有密切关系,谱论也大量涉及逆算子的问题.将算子求逆应用到微分算子和积分算子上,推动了微分方程和
- matlab解高阶非齐次方程并作图,2x2齐次线性方程组作图
阿橘要努力上清华
主题:不同于一般常微分方程课程千篇一律地从分离变量和一阶线性方程讲起,MIT《微分方程》第一讲就以独特的视角从全局的角度诠释了微分方程的内涵。课程从方向场和积分曲线入手,深入透彻地剖析了微分方程的实质。一上来,撇开那些有解的特殊的微分方程不谈,却从几何方向通俗易懂,而又全面深入地告诉我们什么是微分方程,解微分方程其实是什么。主题:老头爽约了,他没有按之前说的,讲线性方程的解法,而是开始讲数值方法。
- MATLAB简介(附电子书学习资料)
hweiyu00
分享matlab开发语言
MATLAB简介MATLAB(MatrixLaboratory)是由MathWorks公司开发的一款高性能数值计算和可视化编程语言及交互式环境,广泛应用于工程、科学、金融等领域。电子书资料:https://pan.quark.cn/s/02f3324bc7f3主要功能数值计算矩阵和向量运算线性代数、微积分、微分方程求解统计分析和优化算法数据可视化2D/3D绘图(曲线、曲面、散点图等)动态可视化(动
- 多模态大模型训练困境:当神经辐射场遭遇物理约束的深度博弈
尘烬海
人工智能golang开发语言
一、物理约束的本质性对抗:流形嵌入的维度诅咒在NeRF的隐式场景表示中,物理约束的引入本质上是将高维连续流形嵌入到低维物理参数空间。这种嵌入导致两个关键矛盾:微分几何冲突:物理规律通常由偏微分方程(PDE)描述,其解空间维度远低于NeRF的隐式参数空间。当训练过程中强制约束时,参数梯度场在流形切空间产生投影失真。李群对称性破坏:刚体运动等物理过程构成SE(3)李群,而NeRF的MLP网络无法保持该
- PINN高阶技术综合应用:复杂问题求解与神经算子进阶
LIUDAN'S WORLD
python人工智能算法深度学习
本文深入探讨物理信息神经网络(PINNs)在处理复杂工程问题中的高阶技术应用。重点关注高维偏微分方程、强非线性系统、奇异性问题的求解策略,反问题中的参数识别与系统辨识方法,以及基于问题特性的网络架构优化设计。此外,本文详细介绍了神经算子理论及其在学习解算子中的创新应用,为PINN技术的工程实践提供了系统性的高级解决方案。关键词:高阶PINN技术、反问题求解、网络架构优化、神经算子、复杂系统建模1.
- 信号与系统(15)- 系统的频域分析法:周期信号
Zhongzheng Wang
信号与系统信号处理
系统的频域分析法,是通过傅里叶变换将信号分解为多个正弦函数之和或者积分,由此得到信号的频谱。接着对各个正弦分量求系统对其的响应,进而得到系统对各个分量响应的频谱,最后将各个分量的响应叠加,再求傅里叶反变换,求得最终响应的分析方法。相比时域分析法,这种方法不需要求解微分方程,以及使用卷积积分计算系统对信号的响应,但是必须要经过傅里叶变换和傅里叶反变换。这种分析方法只能求解零状态响应或稳态响应,零输入
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文