逻辑地址又称为相对地址
物理地址又称为绝对地址
内存中有多个进程,相对地址是相对于进程的起始地址而言的地址.
绝对地址是在整个内存下的地址
引入:用户程序要在系统中运行,必须先将它装入内存,然后再将其转变为一个可以执行程序,通常需要以下几个步骤:
编译--------->链接--------->装入
编译
:高级语言翻译为机器语言,由源代码文件生成目标模块.
链接
:链接后形成完整的逻辑地址,目标模块生成装入模块.
装入
:装入后形成物理地址,装入模块装入内存.
静态链接
:在程序运行之前,先将各目标模块及它们所需的库函数连接成一个完整的可执行文件(装入模块),之后不再拆开。
装入时动态链接
:将各目标模块装入内存时,边装入边链接的链接方式。
运行时动态链接
·在程序执行中需要该目标模块时,才对它进行链接。其优点是便于修改和更新,便于实现对目标模块的共享。
绝对装入
:在编译时,如果知道程序将放到内存中的哪个位置,编译程序将产生绝对地址的目标代码。装入程序按照装入模块中的地址,将程序和数据装入内存。
静态重定位
:又称可重定位装入。编译、链接后的装入模块的地址都是从O开始的,指令中使用的地址、数据存放的地址都是相对于起始地址而言的逻辑地址。可根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对地址进行“重定位”,将逻辑地址变换为物理地址(地址变换是在装入时一次完成的)。
动态重定位
:又称动态运行时装入。编译、链接后的装入模块的地址都是从o开始的。装入程序把装入模块装入内存后,并不会立即把逻辑地址转换为物理地址,而是把地址转换推迟到程序真正要执行时才进行。因此装入内存后所有的地址依然是逻辑地址。这种方式需要一个重定位寄存器的支持。
引入:
内存管理的目标(内存管理要做什么):
(1)内存空间的分配与回收
(2)内存空间的扩充(实现虚拟性)
(3)地址转换
(4)存储保护
内存保护可采取两种方法:
方法一:在CPU中设置一对上、下限寄存器
,存放进程的上、下限地址。进程的指令要访问某个地址时,CPU检查是否越界。
方法二:采用重定位寄存器
(又称基址寄存器)和界地址寄存器(又称限长寄存器)进行越界检查。重定位寄存器中存放的是进程的起始物理地址。界地址寄存器中存放的是进程的最大逻辑地址。
在单一连续分配方式中,内存被分为系统区
和用户区
。系统区通常位于内存的低地址部分,用于存放操作系统相关数据;用户区用于存放用户进程相关数据。
内存中只能有一道用户程序
,用户程序独占整个用户区空间。
优点:实现简单;无外部碎片
;可以采用覆盖技术扩充内存;不一定需要采取内存保护
缺点:只能用于单用户、单任务的操作系统
中;有内部碎片;存储器利用率极低。
背景:多道程序系统
20世纪60年代出现了支持多道程序的系统,为了能在内存中装入多道程序,且这些程序之间又不会相互干扰,于是将整个用户空间划分为若干个固定大小的分区,在每个分区中只装入一道作业,这样就形成了最早的、最简单的一种可运行多道程序的内存管理方式。
两种形式
:分区大小相等或分区大小不等
分区大小相等:缺乏灵活性,但是很适合用于用一台计算机控制多个相同对象的场合(比如:钢铁广有n个相同的炼钢炉,就可把内存分为n个大小相等的区域存放n个炼钢炉控制程序)
分区大小不等:增加了灵活性,可以满足不同大小的进程需求。根据常在系统中运行的作业大小情况进行划分(比如:划分多个小分区、适量中等分区、少量大分区)
操作系统需要建立一个数据结构―一分区说明表,来实现各个分区的分配与回收。每个表项对应一个分区,通常按分区大小排列。每个表项包括对应分区的大小、起始地址、状态(是否已分配)。
优点:实现简单,无外部碎片。
缺点: a.当用户程序太大时,可能所有的分区都不能满足需求,此时不得不采用覆盖技术来解决,但这又会降低性能; b.会产生内部碎片,内存利用率低。
动态分区分配
又称为可变分区分配。这种分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的大小和数目是可变的。
动态分区分配没有内部碎片
,但是有外部碎片
。
内部碎片,分配给某进程的内存区域中,如果有些部分没有用上。外部碎片,是指内存中的某些空闲分区由于太小而难以利用。如果内存中空闲空间的总和本来可以满足某进程的要求,但由于进程需要的是一整块连续的内存空间,因此这些“碎片”不能满足进程的需求。
可以通过紧凑(拼凑,Compaction)技术来解决外部碎片。
回收内存分区时,可能遇到四种情况
算法思想
:每次都从低地址开始查找,找到第一个能满足大小的空闲分区。
如何实现:空闲分区以地址递增的次序排列。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
算法思想
:由于动态分区分配是一种连续分配方式、为各进程分配的空间必须是连续的一整片区域。因此为了保证当“大进程”到来时能有连续的大片空间,可以尽可能多地留下大片的空闲区,即,优先使用更小的空闲区。
又称最大适应算法( Largest Fit)
算法思想:为了解决最佳适应算法的问题――即留下太多难以利用的小碎片,可以在每次分配时优先使用最大的连续空闲区,这样分配后剩余的空闲区就不会太小,更方便使用。
如何实现:空闲分区按容量递减次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
算法思想:首次适应算法每次都从链头开始查找的。这可能会导致低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。如果每次都从上次查找结束的位置开始检索,就能解决上述问题。
如何实现:空闲分区以地址递增的顺序排列(可排成一个循环链表)。每次分配内存时从上次查找结束的位置开始查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
总结: