由于最近一直在弄kaldi本地化,所以这系列文件一直来不及更新。
这篇主要是讲解librispeech运行的run.sh脚本
#!/bin/bash
# Set this to somewhere where you want to put your data, or where
# someone else has already put it. You'll want to change this
# if you're not on the CLSP grid.
data=/export/a15/vpanayotov/data
# base url for downloads.
data_url=www.openslr.org/resources/12
lm_url=www.openslr.org/resources/11
mfccdir=mfcc
stage=1
. ./cmd.sh
. ./path.sh
. parse_options.sh
# you might not want to do this for interactive shells.
set -e
设置参数
if [ $stage -le 1 ]; then
# download the data. Note: we're using the 100 hour setup for
# now; later in the script we'll download more and use it to train neural
# nets.
for part in dev-clean test-clean dev-other test-other train-clean-100; do
local/download_and_untar.sh $data $data_url $part
done
# download the LM resources
local/download_lm.sh $lm_url data/local/lm
fi
下载100小时音频数据及语言模型相关资源
语言模型相关
3-gram.arpa.gz,3-gram.pruned.1e-7.arpa.gz,3-gram.pruned.3e-7.arpa.gz,4-gram.arpa.gz,g2p-model-5,librispeech-lexicon.txt,librispeech-lm-corm.txt.gz,librispeech-lm-norm.txt.gz,librispeech-vocab.txt,lm_fglarge.arpa.gz,lm_tglarge.arpa.gz,lm_tgmed.arpa.gz,lm_tgsmall.arpa.gz
if [ $stage -le 2 ]; then
# format the data as Kaldi data directories
for part in dev-clean test-clean dev-other test-other train-clean-100; do
# use underscore-separated names in data directories.
local/data_prep.sh $data/LibriSpeech/$part data/$(echo $part | sed s/-/_/g)
done
fi
数据准备
准备内容:
- 创建
wav.scp
,text
,utt2spk
,spk2gender
,utt2dur
文件- 查找
.flac
文件并将flac文件写入wav.scp
- 定位
.trans.txt
文件并将.trans.txt
文件写入到text
- 将flac file name和reader-chapter写入
utt2spk
- 将reader-chapter和reader_gender写入
spk2gender
- 通过
utt2spk
文件生成spk2utt
文件
if [ $stage -le 3 ]; then
# when the "--stage 3" option is used below we skip the G2P steps, and use the
# lexicon we have already downloaded from openslr.org/11/
local/prepare_dict.sh --stage 3 --nj 30 --cmd "$train_cmd" \
data/local/lm data/local/lm data/local/dict_nosp
utils/prepare_lang.sh data/local/dict_nosp \
"" data/local/lang_tmp_nosp data/lang_nosp
local/format_lms.sh --src-dir data/lang_nosp data/local/lm
fi
语言模型准备
准备内容:
- 准备字典(local/prepare_dict_sh)
- 准备语言相关数据(utils/prepare_lang.sh)
- 格式化数据(local/format_lms.sh)
- 通过
arpa2fst
将ARPA-format的语言模型转换成fst(G.fst)
if [ $stage -le 4 ]; then
# Create ConstArpaLm format language model for full 3-gram and 4-gram LMs
utils/build_const_arpa_lm.sh data/local/lm/lm_tglarge.arpa.gz \
data/lang_nosp data/lang_nosp_test_tglarge
utils/build_const_arpa_lm.sh data/local/lm/lm_fglarge.arpa.gz \
data/lang_nosp data/lang_nosp_test_fglarge
fi
用完整的3-gram和4-gram语言模型创建ConstArpaLm格式语言模型
if [ $stage -le 5 ]; then
# spread the mfccs over various machines, as this data-set is quite large.
if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then
mfcc=$(basename mfccdir) # in case was absolute pathname (unlikely), get basename.
utils/create_split_dir.pl /export/b{02,11,12,13}/$USER/kaldi-data/egs/librispeech/s5/$mfcc/storage \
$mfccdir/storage
fi
fi
if [ $stage -le 6 ]; then
for part in dev_clean test_clean dev_other test_other train_clean_100; do
steps/make_mfcc.sh --cmd "$train_cmd" --nj 40 data/$part exp/make_mfcc/$part $mfccdir
steps/compute_cmvn_stats.sh data/$part exp/make_mfcc/$part $mfccdir
done
fi
特征提取
步骤
- 提取特征
- 计算每条wav文件的均值方差
if [ $stage -le 7 ]; then
# Make some small data subsets for early system-build stages. Note, there are 29k
# utterances in the train_clean_100 directory which has 100 hours of data.
# For the monophone stages we select the shortest utterances, which should make it
# easier to align the data from a flat start.
utils/subset_data_dir.sh --shortest data/train_clean_100 2000 data/train_2kshort
utils/subset_data_dir.sh data/train_clean_100 5000 data/train_5k
utils/subset_data_dir.sh data/train_clean_100 10000 data/train_10k
fi
训练小数据集(100小时)
if [ $stage -le 8 ]; then
# train a monophone system
steps/train_mono.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
data/train_2kshort data/lang_nosp exp/mono
# decode using the monophone model
(
utils/mkgraph.sh data/lang_nosp_test_tgsmall \
exp/mono exp/mono/graph_nosp_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode.sh --nj 20 --cmd "$decode_cmd" exp/mono/graph_nosp_tgsmall \
data/$test exp/mono/decode_nosp_tgsmall_$test
done
)&
fi
训练单因素和解码
步骤
- 训练单因素
- 使用单因素模型解码,开一个子shell创建解码图并解码
if [ $stage -le 9 ]; then
steps/align_si.sh --boost-silence 1.25 --nj 10 --cmd "$train_cmd" \
data/train_5k data/lang_nosp exp/mono exp/mono_ali_5k
# train a first delta + delta-delta triphone system on a subset of 5000 utterances
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" \
2000 10000 data/train_5k data/lang_nosp exp/mono_ali_5k exp/tri1
# decode using the tri1 model
(
utils/mkgraph.sh data/lang_nosp_test_tgsmall \
exp/tri1 exp/tri1/graph_nosp_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode.sh --nj 20 --cmd "$decode_cmd" exp/tri1/graph_nosp_tgsmall \
data/$test exp/tri1/decode_nosp_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tgmed} \
data/$test exp/tri1/decode_nosp_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test exp/tri1/decode_nosp_{tgsmall,tglarge}_$test
done
)&
fi
训练三因素和解码(tri1)
步骤
- 对齐数据,运行指定模型对指定数据进行对齐,一般在新的模型开始训练前调用,上一个版本训练的数据作为输入
- 训练三因素
- 使用tri1模型解码
if [ $stage -le 10 ]; then
steps/align_si.sh --nj 10 --cmd "$train_cmd" \
data/train_10k data/lang_nosp exp/tri1 exp/tri1_ali_10k
# train an LDA+MLLT system.
steps/train_lda_mllt.sh --cmd "$train_cmd" \
--splice-opts "--left-context=3 --right-context=3" 2500 15000 \
data/train_10k data/lang_nosp exp/tri1_ali_10k exp/tri2b
# decode using the LDA+MLLT model
(
utils/mkgraph.sh data/lang_nosp_test_tgsmall \
exp/tri2b exp/tri2b/graph_nosp_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode.sh --nj 20 --cmd "$decode_cmd" exp/tri2b/graph_nosp_tgsmall \
data/$test exp/tri2b/decode_nosp_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tgmed} \
data/$test exp/tri2b/decode_nosp_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test exp/tri2b/decode_nosp_{tgsmall,tglarge}_$test
done
)&
fi
对三因素做LDA+MLLT变换(tri2b)
步骤
- 对齐数据,使用tri1模型
- 做LDA+MLLT变换
- 解码
if [ $stage -le 11 ]; then
# Align a 10k utts subset using the tri2b model
steps/align_si.sh --nj 10 --cmd "$train_cmd" --use-graphs true \
data/train_10k data/lang_nosp exp/tri2b exp/tri2b_ali_10k
# Train tri3b, which is LDA+MLLT+SAT on 10k utts
steps/train_sat.sh --cmd "$train_cmd" 2500 15000 \
data/train_10k data/lang_nosp exp/tri2b_ali_10k exp/tri3b
# decode using the tri3b model
(
utils/mkgraph.sh data/lang_nosp_test_tgsmall \
exp/tri3b exp/tri3b/graph_nosp_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode_fmllr.sh --nj 20 --cmd "$decode_cmd" \
exp/tri3b/graph_nosp_tgsmall data/$test \
exp/tri3b/decode_nosp_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tgmed} \
data/$test exp/tri3b/decode_nosp_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test exp/tri3b/decode_nosp_{tgsmall,tglarge}_$test
done
)&
fi
对三因素做LDA+MLLT+SAT变换(tri3b),针对10k条数据
步骤
- 对齐数据,使用tri2b模型
- 做LDA+MLLT+SAT变换
- 解码
if [ $stage -le 12 ]; then
# align the entire train_clean_100 subset using the tri3b model
steps/align_fmllr.sh --nj 20 --cmd "$train_cmd" \
data/train_clean_100 data/lang_nosp \
exp/tri3b exp/tri3b_ali_clean_100
# train another LDA+MLLT+SAT system on the entire 100 hour subset
steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \
data/train_clean_100 data/lang_nosp \
exp/tri3b_ali_clean_100 exp/tri4b
# decode using the tri4b model
(
utils/mkgraph.sh data/lang_nosp_test_tgsmall \
exp/tri4b exp/tri4b/graph_nosp_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode_fmllr.sh --nj 20 --cmd "$decode_cmd" \
exp/tri4b/graph_nosp_tgsmall data/$test \
exp/tri4b/decode_nosp_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tgmed} \
data/$test exp/tri4b/decode_nosp_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test exp/tri4b/decode_nosp_{tgsmall,tglarge}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,fglarge} \
data/$test exp/tri4b/decode_nosp_{tgsmall,fglarge}_$test
done
)&
fi
对三因素做LDA+MLLT+SAT变换(tri4b),针对100小时数据
步骤
- 对齐数据,使用tri3b模型,这步执行后,可以运行local/run_nnet2_clean_100.sh
- 做LDA+MLL+SAT变换
- 解码
if [ $stage -le 13 ]; then
# Now we compute the pronunciation and silence probabilities from training data,
# and re-create the lang directory.
steps/get_prons.sh --cmd "$train_cmd" \
data/train_clean_100 data/lang_nosp exp/tri4b
utils/dict_dir_add_pronprobs.sh --max-normalize true \
data/local/dict_nosp \
exp/tri4b/pron_counts_nowb.txt exp/tri4b/sil_counts_nowb.txt \
exp/tri4b/pron_bigram_counts_nowb.txt data/local/dict
utils/prepare_lang.sh data/local/dict \
"" data/local/lang_tmp data/lang
local/format_lms.sh --src-dir data/lang data/local/lm
utils/build_const_arpa_lm.sh \
data/local/lm/lm_tglarge.arpa.gz data/lang data/lang_test_tglarge
utils/build_const_arpa_lm.sh \
data/local/lm/lm_fglarge.arpa.gz data/lang data/lang_test_fglarge
# decode using the tri4b model with pronunciation and silence probabilities
(
utils/mkgraph.sh \
data/lang_test_tgsmall exp/tri4b exp/tri4b/graph_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode_fmllr.sh --nj 20 --cmd "$decode_cmd" \
exp/tri4b/graph_tgsmall data/$test \
exp/tri4b/decode_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
data/$test exp/tri4b/decode_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/$test exp/tri4b/decode_{tgsmall,tglarge}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/$test exp/tri4b/decode_{tgsmall,fglarge}_$test
done
)&
fi
从训练数据中计算发音和静音概率,并重新创建lang目录
if [ $stage -le 14 ] && false; then
# This stage is for nnet2 training on 100 hours; we're commenting it out
# as it's deprecated.
# align train_clean_100 using the tri4b model
steps/align_fmllr.sh --nj 30 --cmd "$train_cmd" \
data/train_clean_100 data/lang exp/tri4b exp/tri4b_ali_clean_100
# This nnet2 training script is deprecated.
local/nnet2/run_5a_clean_100.sh
fi
训练nnet2模型,100小时集(已弃用)
- 对齐数据,使用tri4b模型
- 训练nnet2,已弃用
if [ $stage -le 15 ]; then
local/download_and_untar.sh $data $data_url train-clean-360
# now add the "clean-360" subset to the mix ...
local/data_prep.sh \
$data/LibriSpeech/train-clean-360 data/train_clean_360
steps/make_mfcc.sh --cmd "$train_cmd" --nj 40 data/train_clean_360 \
exp/make_mfcc/train_clean_360 $mfccdir
steps/compute_cmvn_stats.sh \
data/train_clean_360 exp/make_mfcc/train_clean_360 $mfccdir
# ... and then combine the two sets into a 460 hour one
utils/combine_data.sh \
data/train_clean_460 data/train_clean_100 data/train_clean_360
fi
合并360小时 -> 460小时
步骤
- 下载并解压数据
- 数据准备
- 特征提取
- 计算每条wav文件的均值方差
- 合并两个数据集
if [ $stage -le 16 ]; then
# align the new, combined set, using the tri4b model
steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \
data/train_clean_460 data/lang exp/tri4b exp/tri4b_ali_clean_460
# create a larger SAT model, trained on the 460 hours of data.
steps/train_sat.sh --cmd "$train_cmd" 5000 100000 \
data/train_clean_460 data/lang exp/tri4b_ali_clean_460 exp/tri5b
# decode using the tri5b model
(
utils/mkgraph.sh data/lang_test_tgsmall \
exp/tri5b exp/tri5b/graph_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode_fmllr.sh --nj 20 --cmd "$decode_cmd" \
exp/tri5b/graph_tgsmall data/$test \
exp/tri5b/decode_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
data/$test exp/tri5b/decode_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/$test exp/tri5b/decode_{tgsmall,tglarge}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/$test exp/tri5b/decode_{tgsmall,fglarge}_$test
done
)&
fi
做LDA+MLLT+SAT变换(tri5b),针对合并集460小时
步骤
- 对齐数据,使用tri4b模型
- 做LDA+MLLT+SAT变换
- 解码
if [ $stage -le 17 ]; then
# prepare the remaining 500 hours of data
local/download_and_untar.sh $data $data_url train-other-500
# prepare the 500 hour subset.
local/data_prep.sh \
$data/LibriSpeech/train-other-500 data/train_other_500
steps/make_mfcc.sh --cmd "$train_cmd" --nj 40 data/train_other_500 \
exp/make_mfcc/train_other_500 $mfccdir
steps/compute_cmvn_stats.sh \
data/train_other_500 exp/make_mfcc/train_other_500 $mfccdir
# combine all the data
utils/combine_data.sh \
data/train_960 data/train_clean_460 data/train_other_500
fi
合并500小时 -> 960小时
步骤
- 下载并解压数据
- 数据准备
- 特征提取
- 计算每条wav文件的均值方差
- 合并两个数据集
if [ $stage -le 18 ]; then
steps/align_fmllr.sh --nj 40 --cmd "$train_cmd" \
data/train_960 data/lang exp/tri5b exp/tri5b_ali_960
# train a SAT model on the 960 hour mixed data. Use the train_quick.sh script
# as it is faster.
steps/train_quick.sh --cmd "$train_cmd" \
7000 150000 data/train_960 data/lang exp/tri5b_ali_960 exp/tri6b
# decode using the tri6b model
(
utils/mkgraph.sh data/lang_test_tgsmall \
exp/tri6b exp/tri6b/graph_tgsmall
for test in test_clean test_other dev_clean dev_other; do
steps/decode_fmllr.sh --nj 20 --cmd "$decode_cmd" \
exp/tri6b/graph_tgsmall data/$test exp/tri6b/decode_tgsmall_$test
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgsmall,tgmed} \
data/$test exp/tri6b/decode_{tgsmall,tgmed}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/$test exp/tri6b/decode_{tgsmall,tglarge}_$test
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/$test exp/tri6b/decode_{tgsmall,fglarge}_$test
done
)&
fi
做LDA+MLLT+SAT变换(tri6b),针对合并集960小时
步骤
- 对齐数据,使用tri5b模型
- 做LDA+MLLT+SAT变换
- 解码
if [ $stage -le 19 ]; then
# this does some data-cleaning. The cleaned data should be useful when we add
# the neural net and chain systems. (although actually it was pretty clean already.)
local/run_cleanup_segmentation.sh
fi
划分“好”的数据来训练数据(tri6b_cleaned)
if [ $stage -le 20 ]; then
# train and test nnet3 tdnn models on the entire data with data-cleaning.
local/chain/run_tdnn.sh # set "--stage 11" if you have already run local/nnet3/run_tdnn.sh
fi
训练和测试nnet3 tdnn模型