- 机器人动力学模型及其线性化阻抗控制模型
机器人动力学模型机器人动力学模型描述了机器人的运动与所受力和力矩之间的关系。这个模型考虑了机器人的质量、惯性、关节摩擦、重力等多种因素,用于预测和解释机器人在给定输入下的动态行为。动力学模型是设计机器人控制器的基础,它可以帮助我们理解机器人如何响应控制指令,并优化机器人的运动性能。具体来说,机器人动力学模型通常由一组微分方程组成,这些方程描述了机器人各关节的加速度、速度和位置与施加在关节上的力和力
- Go 语言实现本地大模型聊天机器人:从推理到 Web UI 的全流程
雷羿 LexChien
Gogolang机器人前端
接续Go-LLM-CPP专案,继续扩充前端聊天室功能一.专案目录架构:go-llm-cpp/├──bin/#第三方依赖│├──go-llama.cpp/#封裝GGUF模型推理(CGo)│└──llm-go/#prompt构建+回合管理(Go)│├──cmd/#可执行应用│└──main.go#CLI/HTTPserver入口点│├──config/│└──persona.yaml#人格模板(系统p
- 基于STM32F103C8T6的超声波测距开发详解:从接线到精确测量的完整指南
快撑死的鱼
硬件算法实践stm32嵌入式硬件单片机
基于STM32F103C8T6的超声波测距开发详解:从接线到精确测量的完整指南引言超声波测距技术是一种基于超声波的传播时间来测量目标物体与传感器之间距离的技术。由于其测量精度高、成本低、易于实现,广泛应用于机器人避障、自动停车、液位测量等领域。STM32F103C8T6是一款基于ARMCortex-M3内核的高性能微控制器,凭借其丰富的外设和强大的处理能力,成为嵌入式开发中常用的选择。本文将通过一
- 【雕爷学编程】MicroPython手册之 ESP32-CAM 机器人目标跟踪
驴友花雕
机器人目标跟踪人工智能嵌入式硬件pythonMicroPythonESP32-CAM
MicroPython是为了在嵌入式系统中运行Python3编程语言而设计的轻量级版本解释器。与常规Python相比,MicroPython解释器体积小(仅100KB左右),通过编译成二进制Executable文件运行,执行效率较高。它使用了轻量级的垃圾回收机制并移除了大部分Python标准库,以适应资源限制的微控制器。MicroPython主要特点包括:1、语法和功能与标准Python兼容,易学
- Python实例题:简单的聊天机器人
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目简单的聊天机器人要求:实现一个基于规则的聊天机器人,支持简单问答和对话。支持以下功能:问候语识别与回应天气查询(模拟)时间/日期查询简单数学计算随机笑话生成添加对话历史记录功能,可随时查看。支持退出对话的指令。解题思路:使用关键词匹配实现简单的问答逻辑。利用Python内置模块处理时间、数学计算等功能。维护对话历史列表存储交
- 搬运机器人系列编程:Fanuc M-20iA_20.搬运机器人系统的集成与安装
zhubeibei168
机器人及导航机器人数据挖掘人工智能
20.搬运机器人系统的集成与安装20.1系统集成概述在汽车制造行业中,搬运机器人系统的集成是一个复杂而多步骤的过程,涉及机械、电气、软件等多个方面的专业知识。FanucM-20iA搬运机器人以其高效、精准的特点,在这一领域中得到了广泛应用。本节将详细介绍如何将FanucM-20iA机器人集成到汽车制造生产线中,包括硬件安装、软件配置、系统调试等关键步骤。20.1.1机器人系统集成的重要性机器人系统
- Python|Pyppeteer规避反自动化检测方法【最新方案】(33)
写python的鑫哥
Pyppeteer从入门到精通pythonpyppeteerpuppeteer规避反自动化检测反爬虫
前言本文是该专栏的第33篇,结合优质项目案例持续分享Pyppeteer的干货知识,记得关注。相信有些同学在使用Pyppeteer框架进行某个自动化操作的时候,会触发平台的检测机制,让目标平台识别出当前是机器人在操作,而非人为操作,导致让你的程序无法继续进行下一步。对于上述这种情况,你是不是有很大的疑惑呢?别担心,本文笔者专门针对上述问题,来详细介绍在使用Pyppeteer的过程中,出现反自动化机制
- 深度报告:中老年AI陪伴机器人需求分析
MidJourney中文版
AI机器人人工智能机器人
银发经济新赛道:中老年陪伴聊天AI机器人需求价值与发展路径分析1老龄化社会的隐性需求全球人口结构加速老龄化背景下,老年孤独问题日益凸显为公共健康挑战。传统家庭结构变迁导致独居老人比例持续上升,情感支持缺位与社交隔离形成双重压力,而现有社会服务难以满足高频次、个性化的陪伴需求。在此现实困境中,具备自然语言交互能力的AI机器人玩具展现出独特价值——通过技术手段填补情感空缺,成为应对银发群体精神健康问题
- BARN_dataset的生成代码jackal-map-creation-master的使用说明:
heng6868
研究生机器人python
主要代码是gen_world_ca.py,其中有各个参数来调节,来生成适合自己机器人的gazebo环境,顺带着还会生成路径等等(没有具体研究),具体参数如下:jackaltakesup2extragridsquaresoneachsideinadditiontocentersquarejackal_radius=3pgmfileresolutionpgm_res=0.15#metersperpix
- 【自动导引车领域涉及许多专业术语】
是刘彦宏吖
制造业数字化转型人工智能AGVAMR
自动导引车领域涉及许多专业术语。以下是一些核心和常见的术语及其解释:核心概念AGV:自动导引车。这是最基础的术语,指装备有自动导引装置(如电磁、光学、激光、SLAM等),能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车。AMR:自主移动机器人。新一代的AGV,强调更强的自主性、灵活性和智能。与依赖固定路径的传统AGV不同,AMR通常使用SLAM技术构建环境地图,并能自主规划最优路径、
- 用AI实现“抢券自由”:手把手教你打造智能抢单机器人
目录一、手速不够?抢券党的真实困境二、技术揭秘:RPA+AI如何成为“抢券外挂”1.什么是RPA(机器人流程自动化)?2.AI工作流的降维打击三、实战教学:20行代码打造AI抢券机器人1.工具准备2.智能脚本核心代码四、高阶技巧:让机器人更“聪明”的3个秘密1.视觉识别加持2.多账号并行操作3.智能避坑策略五、技术延伸:RPA+AI还能做什么?六、避坑指南:新手常见问题解答一、手速不够?抢券党的真
- 地面电力巡检机器人系统设计(支持资料参考_相关定制)
摘要随着时代的发展,电力基础设施建设逐渐成为经济发展的重要一环。目前,巡检作业方式仍旧是以人工巡视为主,这样就会使得检修时间滞后,导致输电线路运行效率低下。机器人对释放劳动力和提高人们生活水平有着不可替代的地位,已经成为各国科技发展的重要战略。机器人可以为我们做一些我们人类做不到的事情也可以帮助我们去一些危险地区探索或
- ZED相机与Foxglove集成:加速机器人视觉调试效率的实用方案
随着机器人技术的发展,实时视觉数据流的高效传输和可视化成为提升系统性能的重要因素。通过ZED相机(包括ZED2i和ZEDX)与FoxgloveStudio平台的结合,开发者能够轻松访问高质量的2D图像、深度图和点云数据,从而显著提高感知系统的调试效率。实时可视化价值数据监控ZED相机与Foxglove的集成使得开发者可以在Foxglove平台上查看高分辨率的2D图像、深度图和点云数据。这种能力让团
- 逻辑结构学派一(五个基础理论)
刘海东刘海东
人工智能
逻辑结构学派一(五个基础理论)作者:刘海东,中国广东技术师范大学摘要本篇论文通过《逻辑结构学派的宗旨》、《逻辑结构学》、《逻辑工程学》、《逻辑方程结构图理论》、《仿生逻辑理论》五个领域的研究提出《逻辑结构学派的宗旨》、《主观能动性结构》、《主观能动性结构工程》、《赋予生命的逻辑方程结构图》、《仿生逻辑》五个基础经典理论,让人工智能、机器人、智能社会三个主体的基础研究有了方向、方法和判断标准。关键词
- 【无需编程即可创建交易机器人】
打造交易机器人通常需要一定的编程知识,但也有一些无需编程的工具和平台可以帮助用户实现这一目标。以下是几种无需编程即可创建交易机器人的方法:使用可视化交易平台许多交易平台提供了可视化工具,允许用户通过拖放组件来创建交易策略。例如,TradingView和MetaTrader都提供了这样的功能。用户可以通过选择不同的技术指标、设置条件规则来构建交易策略,而无需编写代码。利用第三方机器人服务一些第三方服
- STM32外设应用全解析
人工智能我来了
IT技术stm32
STM32外设应用全解析STM32微控制器是一颗神奇的芯片,仿佛是嵌入式系统的瑞士军刀,集合了多种外设,为你的项目赋能。今天,我们将深入解析STM32的外设,看看它们如何为各种应用场景增添色彩。准备好了吗?让我们一起探讨吧!1.STM32外设概述1.1什么是STM32外设?你有没有想过,单片机其实就像一个机器人,而外设就是帮它实现各种功能的“工具人”?STM32单片机,基于ARMCortex-M3
- AI时代的微改变
测试@小成同学
人工智能人工智能
改变1:新闻行业AI主播正式上岗改变2:手机制造商李健称荣耀不再是智能手机制造商改变3:汽车制造商马斯克:特斯拉其实不是一家汽车制造商,而是一家人工智能机器人公司。特斯拉的终极目标是成为一家生产机器人的公司,包括车形机器人和人形机器人。强者拥抱变化,弱者畏惧变化,顺应时代洪流。
- 路径规划算法---A* 算法详解:最优路径规划的启发式之王
HR Zhou
路径规划算法算法路径规划A算法图搜索算法
A*(A-Star)算法是最常用、最实用的路径规划算法之一。它结合了Dijkstra算法的最短路径保证与启发式搜索的高效性,是自动驾驶、机器人、游戏AI等领域的“黄金标准”。一、A*是什么?A*是一种启发式图搜索算法,用于在图中寻找从起点到目标的最短路径。它兼顾两件事:已经走过的真实代价(走了多远)到目标的预计距离(还有多远)并通过一个公式综合评估下一步该往哪走。二、核心思想公式f(n)=g(n)
- 提炼总结—ROS2机器人开发(第9章)(下)
写在最前面的话为什么做该博客?该博客的特点是什么?随着DeepSeek、ChatGPT等AI技术的崛起,促使机器人技术发展到了新的高度,诞生了宇树科技、特斯拉为代表的人形机器人,四足机器人等等,越来越多的科技巨头涌入机器人赛道,行业对于相关人才的需求也随之达到了顶峰。本博客的内容是替你阅读所有关于机器人的经典书籍,采用书籍瘦身计划,帮你提炼出核心内容,采用最通俗易懂的语言来解释原理,将书读薄。大大
- LabVIEW 3D 场景中 Voronoi 图(基站覆盖模拟)功能
LabVIEW开发
LabVIEW知识LabVIEW参考程序labview3dLabVIEW程序LabVIEW知识LabVIEW功能
通过MathScriptNode与3D场景图(SceneGraph),模拟蜂窝基站部署场景,通过Voronoi图划分基站覆盖区域。既实现三维地形构建、交互操作(如视角调整、基站创建),又能动态生成Voronoi图展示基站影响范围,覆盖对象创建、纹理映射、透明度设置等三维可视化关键逻辑,为通信场景模拟、机器人路径规划等提供基础验证环境。功能介绍核心流程三维地形构建:用随机高度图(rand函数生成)创
- AI人工智能领域必备:AI芯片的关键作用
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能ai
AI人工智能领域必备:AI芯片的关键作用关键词:AI芯片、算力、神经网络、能效比、专用架构、异构计算、存算一体摘要:在人工智能高速发展的今天,从手机里的“语音助手”到马路上的“自动驾驶汽车”,从医院的“智能影像诊断”到工厂的“机器人流水线”,AI技术的落地离不开一个“幕后大功臣”——AI芯片。本文将用“快递分拣工厂”“人脑神经村”等生活案例,带你一步一步理解AI芯片的核心作用、工作原理和未来趋势,
- 大语言模型应用指南:谷歌 Gemini 简介
AI天才研究院
AI大模型企业级应用开发实战AI人工智能与大数据计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:谷歌Gemini简介关键词:大语言模型,Gemini,谷歌,人工智能,应用指南1.背景介绍近年来,人工智能领域取得了突破性进展,尤其是大语言模型(LargeLanguageModels,LLMs)的出现,彻底改变了我们与信息交互的方式。从最初的聊天机器人到如今的代码生成、文本创作等领域,LLMs展现出惊人的能力。谷歌作为科技巨头,一直走在人工智能研究的前沿。继BERT、LaMD
- 用于人形机器人强化学习运动的神经网络架构分析
1.引言:人形机器人运动强化学习中的架构探索人形机器人具备在多样化环境中自主运行的巨大潜力,有望缓解工厂劳动力短缺、协助居家养老以及探索新星球等问题。其拟人化的特性使其在执行类人操作任务(如运动和操纵)方面具有独特优势。深度强化学习(DRL)作为一种前景广阔的无模型方法,能够有效控制双足运动,实现复杂行为的自主学习,而无需显式动力学模型。1.1人形机器人运动强化学习的机遇与挑战尽管DRL取得了显著
- 关于系统无法找到 arm-linux-gcc 命令,这表明你的环境中尚未安装 ARM 交叉编译工具链。以下是详细的解决方案:(DIY机器人工房)
DIY机器人工房
软件问题解决方法大全arm开发linux运维交叉编译嵌入式
1.错误原因分析错误信息:无法将“arm-linux-gcc”项识别为cmdlet/函数/程序这说明Windows或Cygwin环境中没有安装ARM交叉编译工具,或者工具路径未添加到系统PATH中。当前环境:你之前使用的是Cygwin环境下的x86_64架构GCC(用于编译x86程序),而arm-linux-gcc是专门用于编译ARM架构程序的工具链,需要额外安装。2.解决方案:安装ARM交叉编译
- VLA模型
一介绍在机器人领域,视觉-语言-动作(VLA)模型的发展经历了显著的演变,这得益于计算机视觉和自然语言处理领域的进步。VLA模型代表了一类旨在处理多模态输入的模型,整合了来自视觉、语言和动作的信息。这些模型对于实现具身智能至关重要,使机器人能够理解物理世界并与之互动。以下是VLA模型发展的时间线:早期阶段:计算机视觉和自然语言处理的集成大约在2015年开始,随着视觉问答(VQA)系统的出现。这些系
- 禾赛嵌入式工程师面试
面试的是机器人嵌入式岗位1如果一个按键A,按键B,用ST32控制,你会如何设计从而识别哪个短按,长按,同时按,你会如何设计为了识别按键的短按、长按和同时按的情况,可以通过STM32的GPIO(通用输入输出)和定时器来实现。基本思路是:短按:按键按下并立即释放,按下时间很短。长按:按键按下并持续一段时间不释放。同时按:按键A和B同时按下。方案设计:硬件连接:将按键A和按键B连接到STM32的GPIO
- 睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
BFT白芙堂
机器人人工智能睿尔曼机器人协作机器人机器学习复合机器人
在工业自动化与智能服务深度融合的浪潮中,协作机器人凭借其安全、灵活、易部署的特性,成为推动产业升级的核心力量。睿尔曼(RuiermanRobotics)作为中国协作机器人领域的领军品牌,始终以“让机器人触手可及”为使命,专注于轻量化、高精度、高性价比的协作机器人研发与生产。其产品矩阵覆盖工业制造、物流仓储、医疗健康、商业服务等多场景,通过模块化设计、智能算法优化和开放生态构建,为全球客户提供高效、
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- NVIDIA Isaac GR00T N1.5 人形机器人强化学习入门教程(五)
强化学习与机器人控制仿真
机器人与具身智能人工智能机器人深度学习神经网络强化学习模仿学习具身智能
系列文章目录目录系列文章目录前言一、更深入的理解1.1实体化动作头微调1.1.1实体标签1.1.2工作原理1.1.3支持的实现1.2高级调优参数1.2.1模型组件1.2.1.1视觉编码器(tune_visual)1.2.1.2语言模型(tune_llm)1.2.1.3投影器(tune_projector)1.2.1.4扩散模型(tune_diffusion_model)1.2.2理解数据转换1.2
- 如何使用RViz进行机器人路径规划的可视化?
start_up_go
机器人与ros系统应用rvizrviz可视化
一、环境准备安装ROS与相关功能包#以ROS2Humble为例sudoaptinstallros-humble-navigation2ros-humble-nav2-bringup准备机器人模型(URDF/XACRO)确保已定义机器人的URDF模型,包含传感器和关节信息。配置导航参数创建导航参数文件(如nav2_params.yaml),设置地图、代价地图、规划器等参数。二、启动导航系统与RViz
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc