代码随想录算法训练营第五十九天 |647. 回文子串、516.最长回文子序列、动态规划总结篇

一、647. 回文子串 

题目链接/文章讲解:代码随想录

 思考:

1.确定dp数组(dp table)以及下标的含义

如果本题定义dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话:

会发现很难找到递归关系,dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系,因此本题要从回文字符串的性质着手。

可以找到一种递归关系:

也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文,为了明确这种递归关系,dp数组要定义成一位二维dp数组

bool dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

2.确定递推公式

整体上是两种情况,就是s[i]与s[j]相等、不相等:

当s[i] = s[j],dp[i][j] = false。

当s[i] != s[j],有如下三种情况

  • 情况一:下标i 与 j相同,是同一个字符例如a,是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,要看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        result++;
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        result++;
        dp[i][j] = true;
    }
}

3.dp数组的初始化

dp[i][j]初始化为false

4.确定遍历顺序

从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

代码随想录算法训练营第五十九天 |647. 回文子串、516.最长回文子序列、动态规划总结篇_第1张图片

从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。

for (int i = s.size() - 1; i >= 0; i--) {  
    for (int j = i; j < s.size(); j++) {

5.举例推导dp数组

代码随想录算法训练营第五十九天 |647. 回文子串、516.最长回文子序列、动态规划总结篇_第2张图片

代码实现: 

class Solution {
public:
    int countSubstrings(string s) {
        vector> dp(s.size(), vector(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        result++;
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { // 情况三
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

二、516.最长回文子序列

题目链接/文章讲解:代码随想录

思考:本题和回文子串思路其实差不多,但比求回文子串简单一点,因为情况少了一点

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。

2.确定递推公式

如果s[i]与s[j]相同,dp[i][j] = dp[i + 1][j - 1] + 2;

如果s[i]与s[j]不相同,dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])

不相同说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

if (s[i] == s[j]) {
    dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

3.dp数组的初始化

从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况,所以需要手动初始化一下,当i与j相同,那么dp[i][j]等于1,其他情况dp[i][j]初始为0

vector> dp(s.size(), vector(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;

4.确定遍历顺序

dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1]

所以遍历i的时候一定要从下到上遍历,j可以正常从左向右遍历。

for (int i = s.size() - 1; i >= 0; i--) {
    for (int j = i + 1; j < s.size(); j++) {
        if (s[i] == s[j]) {
            dp[i][j] = dp[i + 1][j - 1] + 2;
        } else {
            dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
        }
    }
}

5.举例推导dp数组

代码随想录算法训练营第五十九天 |647. 回文子串、516.最长回文子序列、动态规划总结篇_第3张图片

代码实现: 

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector> dp(s.size(), vector(s.size(), 0));
        for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

三、动态规划总结篇

题目链接/文章讲解:代码随想录

你可能感兴趣的:(数据结构)