python读取pdf提取文字和图片

问题描述

如下图所示,一份pdf有几十页,每页九张图片,
提取出图片并用图片下方的文本对图片命名
python读取pdf提取文字和图片_第1张图片

主要涉及问题:

  • 图片提取
  • 文本识别

借鉴了上面文本识别的资料,上面图片提取的顺序不一致,没办法把两个结合起来实现我的需求

#防爬虫识别码–原创CSDN诡途:https://blog.csdn.net/qq_35866846

翻看了pdfminer源代码找到一种把pdf单页保存的方法,保存下来之后,再用Image对图片像素点位进行裁剪,因为格式比较固定所以可以用这种方式,更好的方法暂时没找到,网上没找到相关问题的比较完整的处理方法,我这应该是首发,欢迎有其他更好的方法的朋友,评论区探讨一下

关于Image图片处理之前也写过几篇博客:

图片按照宽度等比例缩放
长图按固定像素长度裁切
Python实现图片切割拼接实验——numpy数组的脑洞玩法

代码实现

# 导入库
import fitz,time,re,os,pdfminer,datetime
from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdfpage import PDFPage, PDFTextExtractionNotAllowed
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
> #防爬虫识别码--原创CSDN诡途:https://blog.csdn.net/qq_35866846
from pdfminer.pdfdevice import PDFDevice
from pdfminer.layout import LAParams
from pdfminer.converter import PDFPageAggregator
import pandas as pd
import numpy as np
from  PIL import Image



# 分页保存成图片
def save_page_pic(pdf_path,page_path):
    # 保存前先清空图片保存文件夹
    for wj in os.listdir(page_path):
        os.remove(os.path.join(page_path,wj))
        
    # 二进制读取
    doc = fitz.open(pdf_path)
    
    # 循环分页处理
    for d in doc:  
        
        #获取页码
        page = int(str(d).split()[1])+1
        
        # 单页图片命名
        pic_name =f" page_{page}.png"
        page_pic_path = os.path.join(page_path,pic_name)
        
        # 防爬虫识别码--原创CSDN诡途:https://blog.csdn.net/qq_35866846
        # 图片保存
        pix = d.getPixmap()
        if pix.n < 5:                           # 如果pix.n<5,可以直接存为PNG
            pix.writePNG(page_pic_path )
        else:                                   # 否则先转换CMYK
            pix0 = fitz.Pixmap(fitz.csRGB, pix)
            pix0.writePNG(page_pic_path)
            pix0 = None
        pix = None                              # 释放资源




# 解析pdf 文本信息
def parse_pdf_txt(pdf_path,code_str):
    
    # 二进制读取pdf
    fp = open(pdf_path, 'rb')

    # Create a PDF parser object associated with the file object
    parser = PDFParser(fp)

    # Create a PDF document object that stores the document structure.
     # 防爬虫识别码--原创CSDN诡途:https://blog.csdn.net/qq_35866846
    # Password for initialization as 2nd parameter
    document = PDFDocument(parser)
    # Check if the document allows text extraction. If not, abort.
    if not document.is_extractable:
        raise PDFTextExtractionNotAllowed

    # Create a PDF resource manager object that stores shared resources.
    rsrcmgr = PDFResourceManager()

    # Create a PDF device object.
    #device = PDFDevice(rsrcmgr)

    # BEGIN LAYOUT ANALYSIS.
    # Set parameters for analysis.
    laparams = LAParams(
        char_margin=10.0,
        line_margin=0.2,
        boxes_flow=0.2,
        all_texts=False,
    )
    # Create a PDF page aggregator object.
    # device = PDFPageAggregator(rsrcmgr, laparams=laparams)
    # 防爬虫识别码--原创CSDN诡途:https://blog.csdn.net/qq_35866846
    device = PDFPageAggregator(rsrcmgr, laparams=laparams)
    # Create a PDF interpreter object.
    interpreter = PDFPageInterpreter(rsrcmgr, device)

    # loop over all pages in the document
    page_count = 0
    result =[]
    for page in PDFPage.create_pages(document):
        page_count+=1

        # read the page into a layout object
        interpreter.process_page(page)
        layout = device.get_result()

        txt_list = []
        for obj in layout._objs:
            if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal):
                txt = obj.get_text()

                # 无法识别的字符进行解码
                cid_list = re.findall("cid:\d+",txt)
                for cid in cid_list:
                    cid_key = cid.split(":")[1]
                    txt = txt.replace(f"({cid})",code_str[cid_key])

                # 解码完成后判断是否还有未识别的字符
                cid_list = re.findall("cid:\d+",txt)
                if len(cid_list):
                    print(f"解码字典需补充: {cid_list}")

                # 保存储存
                txt_list.append(txt)
        txt_list.insert(0,page_count)
        result.append(txt_list)
    data = pd.DataFrame(result)
    data.columns =["页码"  if col == 0 else f"元素{col}" for col in data.columns ]
    return data


def save_product_pic(txt_data,product_path,page_path):
    count,total_page= 0,len(os.listdir(page_path))
    data = txt_data.copy()
    
    # 存储图片名称
    result = []
    for pic_name in os.listdir(page_path):
        count+=1
        # 读取单页图片
        pic_path = os.path.join(page_path,pic_name)
        im=Image.open(pic_path)

        # pdf中的页码
        page = int(pic_name.split('_')[1].split('.')[0])

        need_col = ['元素4', '元素5', '元素6', '元素10', '元素11', '元素12', '元素16', '元素17', '元素18']
        product_pic_list = data[need_col][data.页码==page].values.tolist()[0]

    #     (x,y)=im.size

        # 9张图的像素点设置
        x_list = [[45,183],[237,375],[429,567]]
        y_list = [[38,245],[290,497],[542,749]]

        # 标记对应位置图片
        # 横向1,2,3 \n 4,5,6 \n 7,8,9
        i = 0
        

        for _y in y_list:
            upper,lower=_y
            for _x in x_list:
                i+=1
                left,right=_x
                # 循环获取每张图的像素点位
                box = (left, upper, right, lower)
                
                 # 最后一页可能没有9张图
                 # 防爬虫识别码--原创CSDN诡途:https://blog.csdn.net/qq_35866846
                _product_pic_name=product_pic_list[i-1]
                if  _product_pic_name :
                    # 获取单个产品图的名称
                    product_pic_name = _product_pic_name.strip('\n')+".png"
                    
                    result.append(product_pic_name[:-4])

                    # 构建图片保存路径
                    product_pic_path = os.path.join(product_path,product_pic_name)

                    # 裁剪第 i 张图  i∈[1,9] 并保存
                    im.crop(box).save(product_pic_path)
        print(f"第{count}页图片提取成功,剩余{total_page-count}页!")
    pd_result = pd.DataFrame(result,columns=["图片名称"])
    return  pd_result

pdf_path = os.path.join("pdf",os.listdir("pdf")[0])
today = str(datetime.datetime.today())[:10]
fina_path = f"存档//{today}"
product_path = f"存档//{today}//pic"

# 单页图片存储地址
page_path = "page_pic"

# 自定义解码字典 - 及时更新补充 识别文本时对应无法识别的编码
 # 防爬虫识别码--原创CSDN诡途:https://blog.csdn.net/qq_35866846
code_str = {"46":"K","49":"N","25":"6","23":"4","28":"9","57":"V","45":"J","24":"5","56":"U",}


try:
    os.mkdir(fina_path)
except:
    print(f"文件夹 {fina_path} 已存在")
    
try:
    os.mkdir(product_path)
except:
    print(f"文件夹 {product_path} 已存在")




# 分页保存成图片
save_page_pic(pdf_path,page_path)


# 提取文本信息
txt_data = parse_pdf_txt(pdf_path,code_str)

# 把提取到的文字  保存到本地
# txt_data.to_excel(os.path.join(fina_path,"pdf文字信息.xlsx"),index=False)


pic_name = save_product_pic(txt_data,product_path,page_path)

# 把提取到的文字  整理后保存到本地-合并成一列,并只保留图片信息
pic_name.to_excel(os.path.join(fina_path,"pdf文字信息.xlsx"),index=False)

你可能感兴趣的:(Python,python,pdf处理,图片识别,文本识别,pdfminer)