电信号检测电路设计与制作
摘要:本文通过三导联采集人体的心电信号,依次通过前置放大、高通滤波、50HZ陷波、主放大和低通滤波电路,得到可以在示波器上较清楚显示的心电图。其中,第一级前置放大是CMRR很大的差动放大器,此处采用仪用放大器AD620,放大倍数固定为10的电路;第二级是二阶有源高通滤波器电路,所设计的截止频率为0.05Hz;第三级是50hz陷波电路,能有效去除50HZ工频干拢;第四级是主放大,放大倍数为100倍,采用TL084;第五级为低通滤波器电路,所设计的截止频率为100Hz。该电路具有高输入阻抗、高共模抑制比、低噪声、低温漂和高信噪比等特点,很好地满足心电采集设备的要求,电路简单可靠,可行性强。
关键词:心电放大,AD620,TL084CD,滤波,陷波
1 引言
心血管疾病是人类死亡的主要疾病之一,许多患者心脏病发作后由于未能及时发现和抢救极易发生死亡。然而由于心律失常的出现常常是偶发的,使用通常的心电图机等短程分析方法不易发现,现在较为有效的方法就是采用记录2小时以至更长时间的心电图并加以分析以期捕捉到心律失常波形。
心电放大电路设计应满足以下基本要求:⑴在测量过程中不允许影响正常的生理过程;⑵测得的生理信号不得失真;⑶最大可能地将信号与各种干扰分离;⑷一旦有电击事故等危险情况发生必须对病人提供有效地保护。其中,⑴、⑵、⑷直接与前置放大器设计的优劣有关,⑶主要靠后级的滤波电路实现,但是仍依赖前置级的成功设计。
本文研究设计了一种低功耗、结构简单、性价比高的心电放大器,在此基础上可研制出便携式动态心电记录仪。该仪器的最大优点是电路简单、实用、低功耗且成本低廉,对各中小型医院的危重病人的抢救和家庭监护有较好的实用价值。本文设计的心电放大器包括前置放大电路、高通滤波电路、陷波电路、低通放大电路和主放大输出电路五个部分。
2 心电信号的产生及特征
心脏是人体中血液循环的动力源泉,依靠心脏的有节律性的搏动,使得血液不断在体内循环,以维持正常的生命活动。
图2.1 正常心电图的波形图
心脏在搏动之前,心肌首先发生兴奋,在兴奋过程中产生微弱的电流,该电流经人体组织向各部分传导,由于身体各部分的组织不同;各部分与心脏间的距离不同,因此在人体体表各部位,表现出不同的电位变化,这些电位变化可通过导线送至记录装置即心电图机记录下来,形成动态曲线,这就是所谓心电图(electrocardiogram,ECG),也称为体表心电图。正常的人体心电图可以反映心脏激动电位的变化,是由一系列重复出现的下列各波、段和间期组成。
2.1 心电信号的特点
(1)微弱性:从人体体表拾取的心电信号很微弱,一般只有0.05mV~5mV。
(2)不稳定性:人体电信号处于动态变化之中。由于人体是一个与外界有密切关系的开放系统,加之内部存在着器官间的相互影响,所以,无论来自外部或者内部的刺激,都会使人体因适应这种变化,而从一种状态变化到另一种状态,从而使人体信号发生相应的变化。因此,在对心电信号进行测量、分析和处理时,应该注意到它是随时间变化的信号,应按其频谱特性,选择适当的放大系数和显示记录装置。
(3)低频特性:人体心电信号的频谱范围主要集中在0.05~100Hz,分布的带宽范围有限,其频率是比较低的。
(4)随机性:人体心电信号是反映人体机能的信号,它是整个人体系统信息的一部分。由于人体的不均匀性以及可接收多通道输入,信息易随外界干扰而变化,从而使心电信号表现出随机性。
2.2 心电信号的常见噪声
心电信号具有微弱、低频、和高阻抗等特性,极其容易受到干扰,所以分析干扰的来源,以便采取相应的滤除措施,是数据采集重点考虑的一个问题。常见干扰有如下几种:
(1)工频干扰。由于供电网络无所不在,因此50Hz的工频干扰是最普遍的,也是心电信号的主要干扰来源。它主要通过人体和测量系统的输入导线的电容性耦合,以位移电流的形式引入,其强度足以淹没有用的心电信号。
(2)呼吸引起的基线漂移和ECG(心电信号)幅度改变。呼吸引起的基线漂移可以看成是一个以呼吸的频率加入ECG信号的窦性成分(正弦曲线)。这个正弦成分的幅度和频率是变化的。呼吸所引起的ECG信号的幅值的变化可以达到15%。基线漂移的频率约是从0.1Hz一0.3Hz。
(3)高频电磁场干扰。随着无线电技术的发展,各种频段的无线电广播、电视发射台、通讯设备、雷达等的工作使空中的电磁波大量增加。这些高频电磁干扰也可通过测量系统与人体连接的导线引入,可能引起测量结果的不稳定,严重时会使测量系统不能工作。
(4)电极极化干扰。心电的获取是通过在人体体表放置电极来进行的。与电极接触的是电解质溶液(导电膏、汗液或组织液等),从而会构成一个金属—电解质溶液界面,因电化学的作用,在二者之间会产生一定的电位差,称之为极化电压。极化电压的幅度一般较高,在几毫伏到几百毫伏之间。当两电极状态不能保持对称时,极化电压就会产生干扰,特别是在电极与皮肤接触不良以致脱落的情况下更为严重。
(5)肌电干扰。兴奋和收缩是肌肉的最基本功能,在神经系统的控制下,肌肉机械性活动并伴随有生物电活动。这些生物电活动产生的电位差随时间变化的曲线即为肌电图。肌电通常是一种快速的电变化,其频率范围为20—5000Hz。
(6)测量设备本身的干扰。信号处理所采用的电子设备本身也会产生仪器噪声。这类干扰一般具有较高的频率特性,容易通过低通滤波加以滤除。
3 心电信号采集电路设计要求
设计一个用于心电监护仪的心电放大器,心电信号的幅度范围为0.01 mV~5mV,放大器的供电电压为±5V,要求放大器与后续计算机系统中的A/D转换器相连接,A/D转换器的输入电压范围为0~5V。
主要技术指标:
(1)输入阻抗:≥5MΩ
(2)输入偏置电流:<2nA
(3)等效输入噪声:<30uVpp
(4)共模抑制比:50Hz正弦信号的共模抑制比≥90dB
(5)耐极化电压:±300mV
(6)漏电流:<30uA
(7)频带:0.05~100Hz
具体要求:
(1)设计放大器电路;
(2)计算电路中个元器件的参数值;
(3)具体选择电路中所用元器件的型号,并对选择的关键元器件说明其选择理由。
4 心电信号采集电路设计
4.1系统框图的设计
本电路设计主要由五部分组成:前置放大电路,高通滤波电路、50Hz陷波电路、低通滤波电路和主放大输出电路。系统框图如下图所示:
图4.1 心电放大器系统框图
从心电电极得到的心电信号先要经过前置放大电路,被处理后的信号具有低噪声、低漂移、低共模抑制比等性能。这时候的心电信号主要受到工频、肌电等信号的干扰,可通过相关的信号调整电路对其进行处理。现分别对各单元电路设计如下:
4.2 前置放大电路
前置放大器是硬件电路的关键所在,设计的好坏直接影响信号的质量,从而影响到仪器的特性。除了要求精度高稳定之外,根据心电信号的特点,前置级应该满足下述要求:
(1)高输入阻抗。被提取的心电信号是不稳定的高内阻的微弱信号,为了减少信号源内阻的影响,必须提高放大器输入阻抗。一般情况下,信号源的内阻为100kΩ,则放大器的输入阻抗应大于1MΩ。
(2)高共模抑制比(CMRR)。人体所携带的工频干扰以及所测量的信号以外的生理信号的干扰,一般为共模干扰,前置级须采用CMRR高的差动放大形式,以减少共模干扰的传递。
(3)低噪声、低漂移。主要作用是对源信号的影响小,拾取信号的能力强,能够防止输出饱和、使输出稳定。
(4)高增益:心电信号的幅度范围为0.5~5mV,频响:0.05~100Hz,属于微弱信号,因而需要的放大器增益较高。
本次实验设计的前置放大电路如下图所示