深度学习的高阶数学

有了基础的《概率/统计》、《线性代数》、《微积分》知识,就可以上手深度学习的算法和实践了。但经过一段时间的工程实践,慢慢觉得大多数时间都用在选模型,调超参,或者是网络结构的排列组合上。深度学习的黑盒特性越来越明显。难道深度学习工程师就当真是数据“炼丹师”吗?
如果,你有了这样的感觉,下面的视频不妨抽时间看看(都需要翻墙):

李宏毅《Machine Learning and having it deep and structured》

不多说,直接看目录吧。
课程地址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html
《Theory 1 - Why Deep Structure》
 Can shallow network fit any function
 Potential of Deep
 Is Deep better than Shallow
《Theory 2 - Optimization》
 When Gradient is Zero
 Deep Linear Network
 Does Deep Network have Local Minima
 Geometry of Loss Surfaces (Conjecture)
 Geometry of Loss Surfaces (Empirical)
《Theory 3 - Generalization 》
 Capability of Generalization
 Indicator of Generalization

Sanjeev Arora《The mathematics of machine learning and deep learning》

视频地址:https://www.youtube.com/watch?v=r07Sofj_puQ
这是ICM2018的主题演讲,虽然Sanjeev Arora作为普林斯顿计算机科学的教授,但演讲内容深入浅出,并没有涉及大量的数学公式和推导,这里贴一下提纲:

内容提纲

小结

这两部分的内容是相互呼应的,可以先看李宏毅老师的课程,然后在看Sanjeev Arora教授的分享总结。

你可能感兴趣的:(深度学习的高阶数学)