- Apache Ignite 的并发控制:实现高性能事务处理的关键
AI天才研究院
AI实战AI人工智能与大数据LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着大数据时代的到来,数据量的增长和计算能力的提升使得传统的数据库和计算模型已经无法满足业务需求。为了应对这些挑战,分布式计算和存储技术得到了广泛的研究和应用。ApacheIgnite是一款高性能的分布式数据库和计算平台,它可以提供实时性能和高可用性,同时支持事务处理和并发控制。在这篇文章中,我们将深入探讨ApacheIgnite的并发控制机制,以及如何实现高性能事务处理。我们将从以下
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- 10分钟搞定 MinIO 单节点多磁盘部署!打造稳定高可用对象存储【二】
MinIO是一个**高性能、开源的对象存储系统**,主要用于存储非结构化数据(如图片、视频、文档、备份等),与AmazonS3完全兼容。它被广泛用于云原生应用、大数据分析、AI模型存储、容器平台(如Kubernetes)等场景。MinIO支持多种部署模式,其中:单节点单磁盘(Single-NodeSingle-Drive)模式适用于开发测试、小规模应用或资源受限的场景。它的部署简单,不依赖集群、分
- 时序数据库在数据库领域的应用前景
数据库管理艺术
数据库时序数据库strutsai
时序数据库在数据库领域的应用前景关键词:时序数据库、时间序列数据、物联网、监控系统、金融分析、大数据、实时分析摘要:本文深入探讨了时序数据库在现代数据管理中的关键作用和应用前景。我们将从时序数据的基本特性出发,分析时序数据库的核心架构和设计原理,比较主流时序数据库产品的技术特点,并通过实际案例展示其在物联网、金融科技、运维监控等领域的应用价值。文章还将提供时序数据库选型指南,探讨未来技术发展趋势,
- 【软考速通笔记】系统架构设计师⑱——大数据架构设计理论与实践
小康师兄
系统架构设计师笔记系统架构大数据LanbdaKappa数据湖批处理
文章目录一、前言二、传统数据库遇到的问题2.1问题的根源2.2传统解决方法三、大数据基础3.1大数据处理技术3.2大数据利用过程3.3大数据处理系统面临的挑战3.4大数据具有的属性和特征四、Lanbda架构4.1批处理层4.2加速层4.3服务层五、Kappa架构5.1实时层5.2服务层六、Lambda和Kappa对比七、其他一、前言笔记目录大纲请查阅:【软考速通笔记】系统架构设计师——导读关注【小
- 深入解析Hadoop中的推测执行:原理、算法与策略
码字的字节
hadoop布道师hadoop算法推测执行
Hadoop推测执行概述在分布式计算环境中,任务执行速度的不均衡是一个普遍存在的挑战。Hadoop作为主流的大数据处理框架,通过引入推测执行(SpeculativeExecution)机制有效缓解了这一问题。该技术本质上是一种乐观的容错策略,当系统检测到某些任务执行明显落后于预期进度时,会自动在其它计算节点上启动相同任务的冗余副本,最终选择最先完成的任务结果作为输出。核心设计动机推测执行的诞生源于
- 阿里云态势感知和安骑士有什么区别?
阿腾云
阿里云态势感知和安骑士均是阿里云云盾安全产品,态势感知属于安全管理类的产品,安骑士数据服务器安全类产品,阿里云百科网来详细说下阿里云态势感知和安骑士之间的区别:态势感知和安骑士的区别简单来说,安骑士是检测云服务器漏洞的,态势感知提供安全类的大数据分析服务。态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案。安骑士
- 大模型软件的多租户架构设计
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型软件的多租户架构设计关键词:大模型软件、多租户架构、设计、性能优化、安全性摘要:随着大数据和人工智能技术的迅猛发展,大模型软件在各个领域得到了广泛应用。然而,如何在大模型软件中实现高效的多租户架构设计,成为当前技术领域的一个关键挑战。本文将深入探讨大模型软件的多租户架构设计,包括其背景、核心概念、算法原理、系统架构、项目实战以及最佳实践等,旨在为开发者提供一套系统化、全面化的设计指南。设计过
- 【原创文集】如果时光会说话
7a82ff5fbe9b
大数据工程学院21计科本2王玉艳1528662159515286621595.如果时光会说话,它会不会知道未来发生的事情然后跟人类讲呢?从2006年的非典到2019年的新冠疫情,发生了太多太多的让人类遭遇苦难的病毒。如果时光会说话,它是否会将即将发生的事与我们一说,让人类避免所遭遇的一切呢?如果时光会说话,不知道它看见这些在它身体里所发生的一切,它会不会感到悲哀呢?如果时光会说话,我会问问它新冠疫
- 深入解析 Spark:关键问题与答案汇总
※尘
sqlhivespark
在大数据处理领域,Spark凭借其高效的计算能力和丰富的功能,成为了众多开发者和企业的首选框架。然而,在使用Spark的过程中,我们会遇到各种各样的问题,从性能优化到算子使用等。本文将围绕Spark的一些核心问题进行详细解答,帮助大家更好地理解和运用Spark。Spark性能优化策略Spark性能优化是提升作业执行效率的关键,主要可以从以下几个方面入手:首先,资源配置优化至关重要。合理设置Exec
- 大数据领域如何用好 Eureka 实现服务治理
大数据洞察
大数据eureka云原生ai
大数据领域Eureka服务治理实践:架构适配与最佳实践元数据框架标题大数据领域Eureka服务治理实践:架构适配、实现机制与最佳实践关键词Eureka;服务治理;大数据分布式系统;服务发现;负载均衡;故障恢复;云原生适配摘要Eureka作为Netflix开源的AP型服务发现组件,以其高可用性、动态适配性和轻量级特性,成为微服务架构的核心工具。然而,大数据领域的超大规模分布式、高并发数据流动、动态资
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- Eureka 为大数据领域服务治理带来的新思路
大数据洞察
大数据AI应用大数据与AI人工智能eureka大数据云原生ai
Eureka为大数据领域服务治理带来的新思路关键词:Eureka,大数据,服务治理,分布式系统,微服务摘要:本文深入探讨了Eureka为大数据领域服务治理带来的新思路。首先介绍了大数据领域服务治理的背景和现状,阐述了Eureka的核心概念与工作原理。接着详细分析了Eureka核心算法原理,结合Python代码进行说明,并给出相关数学模型和公式。通过项目实战案例,展示了Eureka在大数据服务治理中
- 新能源汽车大数据画像:从零到一实现K-means用户分群
新能源汽车研发&测试入门指南
学习笔记新星杯+王者杯汽车大数据kmeans
基于大数据分析的新能源汽车画像研究全攻略:从原理到实战前言在"软件定义汽车"的时代浪潮下,新能源汽车正经历着从交通工具向智能移动终端的进化。本文将带你深入探索如何通过大数据技术构建精准的用户与产品画像,揭秘车企数字化转型的核心技术。全文涵盖完整的技术链路和实战案例,助你快速掌握这一前沿领域。关键词:新能源汽车;用户画像挖掘;大数据分析;K-means聚类目录一、大数据分析技术基石二、新能源汽车画像
- Flink在物联网实时大数据处理中的最佳实践
大数据洞察
大数据AI应用大数据与AI人工智能flink物联网strutsai
Flink在物联网实时大数据处理中的最佳实践关键词:Flink、物联网、实时大数据处理、最佳实践、数据流摘要:本文围绕Flink在物联网实时大数据处理中的最佳实践展开。首先介绍了相关背景知识,接着深入浅出地解释了Flink、物联网和实时大数据处理的核心概念以及它们之间的关系。然后详细阐述了Flink处理物联网数据的核心算法原理、数学模型和公式。通过实际项目案例,展示了开发环境搭建、代码实现和解读。
- 信小易官网查询入口:信小易大数据信用检测平台!
无忧达人
信小易一个全能型的信用软件,信小易在一几年就上线的大数据信用平台,有着专业的大数据信用行业经验,从个人信用到企业信用,车辆大数据信小易全都有涉足,是一个非常完善的平台。信小易官网查询入口,对于想使用信小易的人来说,第一步我们需要找到信小易的查询入口,然后就可以进行大数据信用的查询服务了,可以查询自己的信用情况,查询结果也是非常准确。信小易查询入口放在文末了,划到文章结尾就可以看到查询入口信小易是一
- 【学术会议投稿】Vue.js组件开发实战:从零构建高效可复用组件
小周不想卷
艾思科蓝学术会议投稿vue.js
【IEEE出版|会后3-4个月EI检索】第三届云计算、大数据应用与软件工程国际学术会议(CBASE2024)_艾思科蓝_学术一站式服务平台更多学术会议请看:https://ais.cn/u/nuyAF3目录引言一、Vue.js组件开发基础二、构建高效可复用组件三、Vue.js组件的高级特性四、Vue.js的优点与缺点Vue.js的优点Vue.js的缺点引言在现代前端开发中,Vue.js凭借其简洁的
- 时序数据库的工业级对决:对比 Apache IoTDB 和 InfluxDB
时序数据说
时序数据库apacheiotdb数据库大数据开源
在数字化浪潮中,物联网(IoT)与工业大数据领域蓬勃发展,时序数据呈爆发式增长。时序数据库作为管理这类数据的核心工具,其性能、功能和适应性直接影响到整个系统的运行效率与价值实现。ApacheIoTDB和InfluxDB作为时序数据库领域的佼佼者,被广泛应用于各类场景。深入剖析二者区别,对开发者、企业架构师和数据管理者而言,不仅能为项目选型提供科学依据,还能助力挖掘数据的最大价值。一、诞生背景与社区
- 时序数据库IoTDB与OpenTSDB的对比分析
时序数据说
时序数据库iotdbopentsdb数据库大数据
在物联网与大数据场景下,时序数据库的选择对于系统性能、数据存储与分析能力至关重要。本文将围绕ApacheIoTDB与OpenTSDB这两款开源时序数据库进行对比分析,从分布式架构、部署易用性、分析与计算能力、性能表现以及产品迭代与维护情况五个关键维度展开,旨在为面临海量设备接入和实时数据分析需求的物联网架构师提供客观的技术选型参考。一、分布式架构ApacheIoTDB:IoTDB原生支持分布式
- 女性职业新趋势:揭秘未来高薪热门行业
氧惠爱高省
女生在职业选择上拥有广阔的空间,尤其是在当前快速发展的社会背景下,一些行业不仅成为了高薪热门,还提供了多样化的职业路径。以下是一些可能成为女生高薪热门选择的行业:➤推荐网购返利app“氧惠”,一个领隐藏优惠券+现金返利的平台。氧惠只提供领券返利链接,下单全程都在淘宝、京东、拼多多等原平台,更支持抖音、快手电商、外卖红包返利等。科技与互联网行业人工智能与大数据:随着人工智能和大数据技术的广泛应用,相
- 深入解析Hadoop中的Region分裂与合并机制
码字的字节
hadoop布道师hadoop大数据分布式Region分裂合并
Hadoop与Region的基本概念Hadoop的分布式架构基础作为大数据处理的核心框架,Hadoop通过分布式存储和计算解决了海量数据的处理难题。其架构核心由HDFS(HadoopDistributedFileSystem)和MapReduce组成,前者负责数据的分布式存储,后者实现分布式计算。在HDFS中,数据被分割成固定大小的块(默认128MB)分散存储在集群节点上,而MapReduce则通
- 深入解析Hadoop RPC:技术细节与推广应用
码字的字节
hadoop布道师HadoopRPC
HadoopRPC框架概述在分布式系统的核心架构中,远程过程调用(RPC)机制如同神经网络般连接着各个计算节点。Hadoop作为大数据处理的基石,其自主研发的RPC框架不仅支撑着内部组件的协同运作,更以独特的工程哲学诠释了分布式通信的本质。透明性:隐形的通信桥梁HadoopRPC最显著的特征是其对通信细节的完美封装。当NameNode接收DataNode的心跳检测,或ResourceManager
- 深入解析Hadoop:大数据处理的基石
学习的锅
hadoop大数据分布式
随着信息技术的快速发展和互联网的普及,数据的产生速度极具增加。面对如此海量的数据,传统的数据处理工具显得力不从心。在这种背景下,诞生了一系列用于处理大数据的框架与工具,而ApacheHadoop便是其中最为知名和应用最广泛的一个。本文将深入解析Hadoop的基本原理、架构及其在大数据处理中的重要性。1.Hadoop的起源与发展Hadoop起源于Google公司的三篇奠基性论文:GoogleFile
- 大数据技术关键技术组件
大数据技术是一组用于处理、分析和管理大规模数据集的复杂方法和技术。这些数据集的特点是容量大、增长速度快,且结构多样化,包括结构化、半结构化和非结构化数据。传统数据库管理和分析工具在处理此类数据时效率低下或无法胜任,因此需要专门的大数据技术栈来支持高效的数据处理和智能决策。大数据技术的关键组件通常包括:分布式存储系统:HadoopDistributedFileSystem(HDFS):一个高度可扩展
- 大数据领域HDFS的集群资源管理优化
大数据洞察
大数据与AI人工智能大数据AI应用大数据hdfshadoopai
大数据领域HDFS的集群资源管理优化关键词:HDFS;集群资源管理;存储优化;性能调优;副本策略;负载均衡;NameNode优化摘要:HDFS(Hadoop分布式文件系统)作为大数据领域的基石,承载着海量数据的存储与管理重任。随着数据规模爆炸式增长和业务复杂度提升,HDFS集群的资源管理面临着"存不下、跑不快、管不好"的三重挑战:存储资源浪费与不足并存、计算与存储资源匹配失衡、集群运维效率低下。本
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- 防不胜防!第六届研究所老姜(姜新宁)算力3.0亏损被骗曝光,巨额损失真相令人胆寒心惊!
大盛律道
数字经济十选五投资诈骗套路频出,投资者股民的“钱袋子”多有损失,以投资理财获取大数据数字经济投资算法为由,将投资者的积蓄收入囊中,成为不法分子常用的诈骗手段之一。为守护好投资者的“钱袋子”,小编持续开展曝光数字经济诈骗行动,维护“投资者”合法权益。近年来,股市波动不断,投资者们无不渴望找到稳健的投资途径。而一些不法分子趁机利用第六届研究所荐股群的手段,设下重重陷阱,致使投资者损失惨重。骗子冒充姜新
- 大数据领域 Kafka 入门指南:从安装到基础使用
大数据洞察
大数据与AI人工智能大数据kafkalinqai
大数据领域Kafka入门指南:从安装到基础使用关键词:Kafka、消息队列、分布式系统、大数据处理、实时数据流、生产者消费者模型、ZooKeeper摘要:本文是一篇全面介绍ApacheKafka的入门指南,从基本概念到实际应用。我们将详细讲解Kafka的核心架构、工作原理,并提供从安装配置到基础使用的完整实践指导。文章包含Kafka的生产者-消费者模型实现、集群部署策略、性能优化技巧,以及在大数据
- python如何抓取网页里面的文字_如何利用python抓取网页文字、图片内容?
weixin_39917437
想必新老python学习者,对爬虫这一概念并不陌生,在如今大数据时代,很多场景都需要利用爬虫去爬取数据,而这刚好时python领域,如何实现?怎么做?一起来看下吧~获取图片:1、当我们浏览这个网站时,会发现,每一个页面的URL都是以网站的域名+page+页数组成,这样我们就可以逐一的访问该网站的网页了。2、当我们看图片列表时中,把鼠标放到图片,右击检查,我们发现,图片的内容由ul包裹的li组成,箭
- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f